Interactions between Mesoscale and Submesoscale Gravity Waves and Their Efficient Representation in Mesoscale-Resolving Models

Jannik Wilhelm Institut für Atmosphäre und Umwelt, Goethe Universität Frankfurt, Frankfurt am Main, Germany

Search for other papers by Jannik Wilhelm in
Current site
Google Scholar
PubMed
Close
,
T. R. Akylas Massachusetts Institute of Technology, Cambridge, Massachusetts

Search for other papers by T. R. Akylas in
Current site
Google Scholar
PubMed
Close
,
Gergely Bölöni Institut für Atmosphäre und Umwelt, Goethe Universität Frankfurt, Frankfurt am Main, Germany

Search for other papers by Gergely Bölöni in
Current site
Google Scholar
PubMed
Close
,
Junhong Wei Institut für Atmosphäre und Umwelt, Goethe Universität Frankfurt, Frankfurt am Main, Germany

Search for other papers by Junhong Wei in
Current site
Google Scholar
PubMed
Close
,
Bruno Ribstein Centre de Mathématiques et Leurs Applications, ENS Cachan, CNRS, Université Paris-Saclay, Cachan, France
CEA, DAM, DIF, Arpajon, France

Search for other papers by Bruno Ribstein in
Current site
Google Scholar
PubMed
Close
,
Rupert Klein Institut für Mathematik, Freie Universität Berlin, Berlin, Germany

Search for other papers by Rupert Klein in
Current site
Google Scholar
PubMed
Close
, and
Ulrich Achatz Institut für Atmosphäre und Umwelt, Goethe Universität Frankfurt, Frankfurt am Main, Germany

Search for other papers by Ulrich Achatz in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

As present weather forecast codes and increasingly many atmospheric climate models resolve at least part of the mesoscale flow, and hence also internal gravity waves (GWs), it is natural to ask whether even in such configurations subgrid-scale GWs might impact the resolved flow and how their effect could be taken into account. This motivates a theoretical and numerical investigation of the interactions between unresolved submesoscale and resolved mesoscale GWs, using Boussinesq dynamics for simplicity. By scaling arguments, first a subset of submesoscale GWs that can indeed influence the dynamics of mesoscale GWs is identified. Therein, hydrostatic GWs with wavelengths corresponding to the largest unresolved scales of present-day limited-area weather forecast models are an interesting example. A large-amplitude WKB theory, allowing for a mesoscale unbalanced flow, is then formulated, based on multiscale asymptotic analysis utilizing a proper scale-separation parameter. Purely vertical propagation of submesoscale GWs is found to be most important, implying inter alia that the resolved flow is only affected by the vertical flux convergence of submesoscale horizontal momentum at leading order. In turn, submesoscale GWs are refracted by mesoscale vertical wind shear while conserving their wave-action density. An efficient numerical implementation of the theory uses a phase-space ray tracer, thus handling the frequent appearance of caustics. The WKB approach and its numerical implementation are validated successfully against submesoscale-resolving simulations of the resonant radiation of mesoscale inertia GWs by a horizontally as well as vertically confined submesoscale GW packet.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Ulrich Achatz, achatz@iau.uni-frankfurt.de

This article is included in the Multi-Scale Dynamics of Gravity Waves (MS-GWaves) Special Collection.

Abstract

As present weather forecast codes and increasingly many atmospheric climate models resolve at least part of the mesoscale flow, and hence also internal gravity waves (GWs), it is natural to ask whether even in such configurations subgrid-scale GWs might impact the resolved flow and how their effect could be taken into account. This motivates a theoretical and numerical investigation of the interactions between unresolved submesoscale and resolved mesoscale GWs, using Boussinesq dynamics for simplicity. By scaling arguments, first a subset of submesoscale GWs that can indeed influence the dynamics of mesoscale GWs is identified. Therein, hydrostatic GWs with wavelengths corresponding to the largest unresolved scales of present-day limited-area weather forecast models are an interesting example. A large-amplitude WKB theory, allowing for a mesoscale unbalanced flow, is then formulated, based on multiscale asymptotic analysis utilizing a proper scale-separation parameter. Purely vertical propagation of submesoscale GWs is found to be most important, implying inter alia that the resolved flow is only affected by the vertical flux convergence of submesoscale horizontal momentum at leading order. In turn, submesoscale GWs are refracted by mesoscale vertical wind shear while conserving their wave-action density. An efficient numerical implementation of the theory uses a phase-space ray tracer, thus handling the frequent appearance of caustics. The WKB approach and its numerical implementation are validated successfully against submesoscale-resolving simulations of the resonant radiation of mesoscale inertia GWs by a horizontally as well as vertically confined submesoscale GW packet.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Ulrich Achatz, achatz@iau.uni-frankfurt.de

This article is included in the Multi-Scale Dynamics of Gravity Waves (MS-GWaves) Special Collection.

Save
  • Achatz, U., R. Klein, and F. Senf, 2010: Gravity waves, scale asymptotics and the pseudo-incompressible equations. J. Fluid Mech., 663, 120147, https://doi.org/10.1017/S0022112010003411.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Achatz, U., B. Ribstein, F. Senf, and R. Klein, 2017: The interaction between synoptic-scale balanced flow and a finite-amplitude mesoscale wave field throughout all atmospheric layers: Weak and moderately strong stratification. Quart. J. Roy. Meteor. Soc., 143, 342361, https://doi.org/10.1002/qj.2926.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alexander, M. J., and T. J. Dunkerton, 1999: A spectral parameterization of mean-flow forcing due to breaking gravity waves. J. Atmos. Sci., 56, 41674182, https://doi.org/10.1175/1520-0469(1999)056<4167:ASPOMF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alexander, M. J., and Coauthors, 2010: Recent developments in gravity-wave effects in climate models and the global distribution of gravity-wave momentum flux from observations and models. Quart. J. Roy. Meteor. Soc., 136, 11031124, https://doi.org/10.1002/qj.637.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Andrews, D., and M. McIntyre, 1978a: An exact theory of nonlinear waves on a Lagrangian-mean flow. J. Fluid Mech., 89, 609646, https://doi.org/10.1017/S0022112078002773.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Andrews, D., and M. McIntyre, 1978b: On wave-action and its relatives. J. Fluid Mech., 89, 647664, https://doi.org/10.1017/S0022112078002785.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baldwin, M. P., and T. J. Dunkerton, 2001: Stratospheric harbingers of anomalous weather regimes. Science, 294, 581584, https://doi.org/10.1126/science.1063315.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bierdel, L., C. Snyder, S.-H. Park, and W. C. Skamarock, 2016: Accuracy of rotational and divergent kinetic energy spectra diagnosed from flight-track winds. J. Atmos. Sci., 73, 32733286, https://doi.org/10.1175/JAS-D-16-0040.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bölöni, G., B. Ribstein, J. Muraschko, C. Sgoff, J. Wei, and U. Achatz, 2016: The interaction between atmospheric gravity waves and large-scale flows: An efficient description beyond the nonacceleration paradigm. J. Atmos. Sci., 73, 48334852, https://doi.org/10.1175/JAS-D-16-0069.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bretherton, F. P., 1966: The propagation of groups of internal gravity waves in a shear flow. Quart. J. Roy. Meteor. Soc., 92, 466480, https://doi.org/10.1002/qj.49709239403.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bretherton, F. P., 1969: On the mean motion induced by internal gravity waves. J. Fluid Mech., 36, 785803, https://doi.org/10.1017/S0022112069001984.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brune, S., and E. Becker, 2013: Indications of stratified turbulence in a mechanistic GCM. J. Atmos. Sci., 70, 231247, https://doi.org/10.1175/JAS-D-12-025.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bühler, O., 2009: Waves and Mean Flows. Cambridge Monographs on Mechanics, Cambridge University Press, 341 pp.

    • Crossref
    • Export Citation
  • Bühler, O., and M. McIntyre, 1998: On non-dissipative wave-mean interactions in the atmosphere or oceans. J. Fluid Mech., 354, 301343, https://doi.org/10.1017/S002211209700774X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bühler, O., and M. McIntyre, 1999: On shear-generated gravity waves that reach the mesosphere. Part II: Wave propagation. J. Atmos. Sci., 56, 37643773, https://doi.org/10.1175/1520-0469(1999)056<3764:OSGGWT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bühler, O., and M. McIntyre, 2003: Remote recoil: A new wave-mean interaction effect. J. Fluid Mech., 492, 207230, https://doi.org/10.1017/S0022112003005639.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bühler, O., and M. McIntyre, 2005: Wave capture and wave-vortex duality. J. Fluid Mech., 534, 6795, https://doi.org/10.1017/S0022112005004374.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Callies, J., R. Ferrari, and O. Bühler, 2014: Transition from geostrophic turbulence to inertia-gravity waves in the atmospheric energy spectrum. Proc. Natl. Acad. Sci. USA, 111, 17 03317 038, https://doi.org/10.1073/pnas.1410772111.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dewar, R. L., 1970: Interaction between hydromagnetic waves and a time-dependent, inhomogeneous medium. Phys. Fluids, 13, 27102720, https://doi.org/10.1063/1.1692854.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Durran, D., 1989: Improving the anelastic approximation. J. Atmos. Sci., 46, 14531461, https://doi.org/10.1175/1520-0469(1989)046<1453:ITAA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fritts, D., and M. Alexander, 2003: Gravity wave dynamics and effects in the middle atmosphere. Rev. Geophys., 41, 1003, https://doi.org/10.1029/2001RG000106.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garcia, R. R., and S. Solomon, 1985: The effect of breaking gravity waves on the dynamics and chemical composition of the mesosphere and lower thermosphere. J. Geophys. Res., 90, 38503868, https://doi.org/10.1029/JD090iD02p03850.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Germano, M., U. Piomelli, P. Moin, and W. H. Cabot, 1991: A dynamic subgrid-scale eddy viscosity model. Phys. Fluids, 3A, 17601765, https://doi.org/10.1063/1.857955.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grimshaw, R. H. J., 1975: Nonlinear internal gravity waves in a rotating fluid. J. Fluid Mech., 71, 497512, https://doi.org/10.1017/S0022112075002704.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grimshaw, R. H. J., 1977: The modulation of an internal gravity-wave packet, and the resonance with the mean motion. Stud. Appl. Math., 56, 241266, https://doi.org/10.1002/sapm1977563241.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hansen, F., R. J. Greatbatch, G. Gollan, T. Jung, and A. Weisheimer, 2017: Remote control on NAO predictability via the stratosphere. Quart. J. Roy. Meteor. Soc., 143, 706719, https://doi.org/10.1002/qj.2958.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haynes, P. H., C. J. Marks, M. E. McIntyre, T. G. Sheperd, and K. P. Shine, 1991: On the downward control of extratropical diabatic circulations by eddy-induced mean zonal forces. J. Atmos. Sci., 48, 651678, https://doi.org/10.1175/1520-0469(1991)048<0651:OTCOED>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hertzog, A., C. Souprayen, and A. Hauchecorne, 2002: Eikonal simulations for the formation and the maintenance of atmospheric gravity wave spectra. J. Geophys. Res., 107, 4145, https://doi.org/10.1029/2001JD000815.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hickel, S., N. A. Adams, and J. A. Domaradzki, 2006: An adaptive local deconvolution method for implicit LES. J. Comput. Phys., 213, 413436, https://doi.org/10.1016/j.jcp.2005.08.017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holton, J. R., 1982: The role of gravity wave induced drag and diffusion in the momentum budget of the mesosphere. J. Atmos. Sci., 39, 791799, https://doi.org/10.1175/1520-0469(1982)039<0791:TROGWI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jia, L., and Coauthors, 2017: Seasonal prediction skill of northern extratropical surface temperature driven by the stratosphere. J. Climate, 30, 44634475, https://doi.org/10.1175/JCLI-D-16-0475.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Joos, H., P. Spichtinger, and U. Lohmann, 2009: Orographic cirrus in a future climate. Atmos. Chem. Phys., 9, 78257845, https://doi.org/10.5194/acp-9-7825-2009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kawatani, Y., M. Takahashi, K. Sato, S. P. Alexander, and T. Tsuda, 2009: Global distribution of atmospheric waves in the equatorial upper troposphere and lower stratosphere: AGCM simulation of sources and propagation. J. Geophys. Res., 114, D01102, https://doi.org/10.1029/2008JD010374.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kawatani, Y., S. Watanabe, K. Sato, T.J. Dunkerton, S. Miyahara, and M. Takahashi, 2010a: The roles of equatorial trapped waves and internal inertia–gravity waves in driving the quasi-biennial oscillation. Part I: Zonal mean wave forcing. J. Atmos. Sci., 67, 963980, https://doi.org/10.1175/2009JAS3222.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kawatani, Y., K. Sato, T. J. Dunkerton, S. Watanabe, S. Miyahara, and M. Takahashi, 2010b: The roles of equatorial trapped waves and internal inertia–gravity waves in driving the quasi-biennial oscillation. Part II: Three-dimensional distribution of wave forcing. J. Atmos. Sci., 67, 981997, https://doi.org/10.1175/2009JAS3223.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kidston, J., A. A. Scaife, S. C. Hardiman, D. M. Mitchell, N. Butchart, M. P. Baldwin, and L. J. Gray, 2015: Stratospheric influence on tropospheric jet streams, storm tracks and surface weather. Nat. Geosci., 8, 433440, https://doi.org/10.1038/ngeo2424.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, Y.-J., S. Eckermann, and H.-Y. Chun, 2003: An overview of the past, present and future of gravity-wave drag parametrization for numerical climate and weather prediction models. Atmos.–Ocean, 41, 6598, https://doi.org/10.3137/ao.410105.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koch, S. E., and Coauthors, 2005: Turbulence and gravity waves within an upper-level front. J. Atmos. Sci., 62, 38853908, https://doi.org/10.1175/JAS3574.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lindzen, R., 1981: Turbulence and stress owing to gravity wave and tidal breakdown. J. Geophys. Res., 86, 97079714, https://doi.org/10.1029/JC086iC10p09707.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lott, F., and M. Miller, 1997: A new subgrid-scale orographic parameterization: Its formulation and testing. Quart. J. Roy. Meteor. Soc., 123, 101127, https://doi.org/10.1002/qj.49712353704.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McFarlane, N. A., 1987: The effect of orographically excited gravity wave drag on the circulation of the lower stratosphere and troposphere. J. Atmos. Sci., 44, 17751800, https://doi.org/10.1175/1520-0469(1987)044<1775:TEOOEG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Muraschko, J., M. Fruman, U. Achatz, S. Hickel, and Y. Toledo, 2015: On the application of WKB theory for the simulation of the weakly nonlinear dynamics of gravity waves. Quart. J. Roy. Meteor. Soc., 141, 676697, https://doi.org/10.1002/qj.2381.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Olbers, D. J., 1976: Nonlinear energy transfer and the energy balance of the internal wave field in the deep ocean. J. Fluid Mech., 74, 375399, https://doi.org/10.1017/S0022112076001857.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Orr, A., P. Bechtold, J. Scinocca, M. Ern, and M. Janiskova, 2010: Improved middle atmosphere climate and forecasts in the ECMWF model through a nonorographic gravity wave drag parameterization. J. Climate, 23, 59055926, https://doi.org/10.1175/2010JCLI3490.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Palmer, T. N., G. J. Shutts, and R. Swinbank, 1986: Alleviation of a systematic westerly bias in general circulation and numerical weather-prediction models through an orographic gravity wave drag parametrization. Quart. J. Roy. Meteor. Soc., 112, 10011039, https://doi.org/10.1002/qj.49711247406.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Plougonven, R., and F. Zhang, 2014: Internal gravity waves from atmospheric jets and fronts. Rev. Geophys., 52, 3376, https://doi.org/10.1002/2012RG000419.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Plougonven, R., A. de la Camara, V. Jewtoukoff, A. Hertzog, and F. Lott, 2017: On the relation between gravity waves and wind speed in the lower stratosphere over the Southern Ocean. J. Atmos. Sci., 74, 10751093, https://doi.org/10.1175/JAS-D-16-0096.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Remmler, S., S. Hickel, M. D. Fruman, and U. Achatz, 2015: Validation of large-eddy simulation methods for gravity wave breaking. J. Atmos. Sci., 72, 35373562, https://doi.org/10.1175/JAS-D-14-0321.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ricard, D., C. Lac, S. Riette, R. Legrand, and A. Mary, 2013: Kinetic energy spectra characteristics of two convection-permitting limited-area models AROME and Meso-NH. Quart. J. Roy. Meteor. Soc., 139, 13271341, https://doi.org/10.1002/qj.2025.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rieper, F., U. Achatz, and R. Klein, 2013a: Range of validity of an extended WKB theory for atmospheric gravity waves: One-dimensional and two-dimensional case. J. Fluid Mech., 729, 330363, https://doi.org/10.1017/jfm.2013.307.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rieper, F., S. Hickel, and U. Achatz, 2013b: A conservative integration of the pseudo-incompressible equations with implicit turbulence parameterization. Mon. Wea. Rev., 141, 861886, https://doi.org/10.1175/MWR-D-12-00026.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sato, K., S. Tateno, S. Watanabe, and Y. Kawatani, 2012: Gravity wave characteristics in the Southern Hemisphere revealed by a high-resolution middle-atmosphere general circulation model. J. Atmos. Sci., 69, 13781396, https://doi.org/10.1175/JAS-D-11-0101.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scaife, A. A., J. R. Knight, G. K. Vallis, and C. K. Folland, 2005: A stratospheric influence on the winter NAO and North Atlantic surface climate. Geophys. Res. Lett., 32, L18715, https://doi.org/10.1029/2005GL023226.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scaife, A. A., and Coauthors, 2012: Climate change projections and stratosphere–troposphere interaction. Climate Dyn., 38, 20892097, https://doi.org/10.1007/s00382-011-1080-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scinocca, J. F., 2003: An accurate spectral nonorographic gravity wave drag parameterization for general circulation models. J. Atmos. Sci., 60, 667682, https://doi.org/10.1175/1520-0469(2003)060<0667:AASNGW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scinocca, J. F., and N. A. McFarlane, 2000: The parametrization of drag induced by stratified flow over anisotropic orography. Quart. J. Roy. Meteor. Soc., 126, 23532393, https://doi.org/10.1002/qj.49712656802.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Senf, F., and U. Achatz, 2011: On the impact of middle-atmosphere thermal tides on the propagation and dissipation of gravity waves. J. Geophys. Res., 116, D24110, https://doi.org/10.1029/2011JD015794.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., 2004: Evaluating mesoscale NWP models using kinetic energy spectra. Mon. Wea. Rev., 132, 30193032, https://doi.org/10.1175/MWR2830.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, J., and Coauthors, 2015: Review of wave-turbulence interactions in the stable atmospheric boundary layer. Rev. Geophys., 53, 956993, https://doi.org/10.1002/2015RG000487.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sutherland, B. R., 2001: Finite-amplitude internal wavepacket dispersion and breaking. J. Fluid Mech., 429, 343380, https://doi.org/10.1017/S0022112000002846.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tabaei, A., and T. R. Akylas, 2007: Resonant long-short wave interactions in an unbounded rotating stratified fluid. Stud. Appl. Math., 119, 271296, https://doi.org/10.1111/j.1467-9590.2007.00389.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Van den Bremer, T. S., and B. R. Sutherland, 2014: The mean flow and long waves induced by two-dimensional internal gravity wavepackets. Phys. Fluids, 26, 106601, https://doi.org/10.1063/1.4899262.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van der Vorst, H. A., 1992: Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems. SIAM J. Sci. Stat. Comput., 13, 631644, https://doi.org/10.1137/0913035.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Warner, C. D., and M. E. McIntyre, 2001: An ultrasimple spectral parameterization for nonorographic gravity waves. J. Atmos. Sci., 58, 18371857, https://doi.org/10.1175/1520-0469(2001)058<1837:AUSPFN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Whitham, G. B., 1974: Linear and Nonlinear Waves. John Wiley and Sons, Inc., 636 pp.

  • Zhang, F., C. A. Davis, M. L. Kaplan, and S. E. Koch, 2001: Wavelet analysis and the governing dynamics of a large-amplitude mesoscale gravity-wave event along the east coast of the United States. Quart. J. Roy. Meteor. Soc., 127, 22092245, https://doi.org/10.1002/qj.49712757702.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, F., S. E. Koch, and M. L. Kaplan, 2003: Numerical simulations of a large-amplitude mesoscale gravity wave event. Meteor. Atmos. Phys., 84, 199216, https://doi.org/10.1007/s00703-002-0594-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 534 206 18
PDF Downloads 316 94 13