Synoptic-Scale Zonal Available Potential Energy Increases in the Northern Hemisphere

Kevin A. Bowley Department of Atmospheric and Oceanic Sciences, McGill University, Montreal, Quebec, Canada

Search for other papers by Kevin A. Bowley in
Current site
Google Scholar
PubMed
Close
,
Eyad H. Atallah Department of Atmospheric and Oceanic Sciences, McGill University, Montreal, Quebec, Canada

Search for other papers by Eyad H. Atallah in
Current site
Google Scholar
PubMed
Close
, and
John R. Gyakum Department of Atmospheric and Oceanic Sciences, McGill University, Montreal, Quebec, Canada

Search for other papers by John R. Gyakum in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Available potential energy (APE), a measure of the energy available for conversion to kinetic energy, has been previously applied to examine changes in baroclinic instability and seasonal changes in the general circulation. Here, pathways in which the troposphere can build the reservoir of zonal available potential energy AZ on synoptic (3–10 day) time scales are explored. A climatology of AZ and its generation GZ and conversion terms are calculated from the National Centers for Environmental Prediction–Department of Energy Reanalysis 2 dataset from 1979 to 2011 for 20°–85°N. A standardized anomaly-based identification technique identifies 183 AZ buildup events, which are grouped into two event types based upon their final AZ standardized anomaly (σ) value: 1) buildup anomalous (BA) events, which exceed 1.5σ, and 2) buildup neutral (BN) events, which do not exceed 1.5σ. Increases in GZ and reductions in baroclinic conversion CA, source and sink terms for AZ, are shown to equally contribute toward increasing AZ in most seasons. A synoptic analysis of composited mass fields for winter BA events (n = 18 events) and winter BN events (n = 28 events) is performed to identify contributions to anomalously low CA and high GZ. A process of high-latitude cooling near 160°E–120°W is found for both composite event types. The cooling processes are characterized by a period of poleward moisture flux and ascent followed by an isolation of the Arctic from the midlatitude flow, resulting in enhanced GZ. Negative anomalies in CA are also diagnosed, which generally occur in regions with northerly dynamic tropopause wind anomalies and neutral to positive thickness anomalies.

Current affiliation: Department of Meteorology and Atmospheric Science, The Pennsylvania State University, University Park, Pennsylvania.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Kevin A. Bowley, kbowley@psu.edu

Abstract

Available potential energy (APE), a measure of the energy available for conversion to kinetic energy, has been previously applied to examine changes in baroclinic instability and seasonal changes in the general circulation. Here, pathways in which the troposphere can build the reservoir of zonal available potential energy AZ on synoptic (3–10 day) time scales are explored. A climatology of AZ and its generation GZ and conversion terms are calculated from the National Centers for Environmental Prediction–Department of Energy Reanalysis 2 dataset from 1979 to 2011 for 20°–85°N. A standardized anomaly-based identification technique identifies 183 AZ buildup events, which are grouped into two event types based upon their final AZ standardized anomaly (σ) value: 1) buildup anomalous (BA) events, which exceed 1.5σ, and 2) buildup neutral (BN) events, which do not exceed 1.5σ. Increases in GZ and reductions in baroclinic conversion CA, source and sink terms for AZ, are shown to equally contribute toward increasing AZ in most seasons. A synoptic analysis of composited mass fields for winter BA events (n = 18 events) and winter BN events (n = 28 events) is performed to identify contributions to anomalously low CA and high GZ. A process of high-latitude cooling near 160°E–120°W is found for both composite event types. The cooling processes are characterized by a period of poleward moisture flux and ascent followed by an isolation of the Arctic from the midlatitude flow, resulting in enhanced GZ. Negative anomalies in CA are also diagnosed, which generally occur in regions with northerly dynamic tropopause wind anomalies and neutral to positive thickness anomalies.

Current affiliation: Department of Meteorology and Atmospheric Science, The Pennsylvania State University, University Park, Pennsylvania.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Kevin A. Bowley, kbowley@psu.edu
Save
  • Black, M. T., and A. B. Pezza, 2013: A universal, broad-environment energy conversion signature of explosive cyclones. Geophys. Res. Lett., 40, 452457, https://doi.org/10.1002/grl.50114.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boer, G. J., 1982: Diagnostic equations in isobaric coordinates. Mon. Wea. Rev., 110, 18011820, https://doi.org/10.1175/1520-0493(1982)110<1801:DEIIC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bosart, L. F., G. J. Hakim, K. R. Tyle, M. A. Bedrick, W. E. Bracken, M. J. Dickinson, and D. M. Schultz, 1996: Large-scale antecedent conditions associated with the 12–14 March 1993 cyclone (“Superstorm ’93”) over eastern North America. Mon. Wea. Rev., 124, 18651891, https://doi.org/10.1175/1520-0493(1996)124<1865:LSACAW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brown, J. A., Jr., 1964: A diagnostic study of tropospheric diabatic heating and the generation of available potential energy. Tellus, 16, 371388, https://doi.org/10.3402/tellusa.v16i3.8931.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, T.-C., 1982: A further study of spectral energetics in the winter atmosphere. Mon. Wea. Rev., 110, 947961, https://doi.org/10.1175/1520-0493(1982)110<0947:AFSOSE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clapp, P. F., 1961: Normal heat sources and sinks in the lower troposphere in winter. Mon. Wea. Rev., 89, 147162, https://doi.org/10.1175/1520-0493(1961)089<0147:NHSASI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cordeira, J. M., 2011: Tropical-extratropical interactions and arctic-extratropical interactions conducive to intraseasonal variability of the North Pacific jet stream. Ph.D. dissertation, University at Albany, State University of New York, 202 pp.

  • Duck Min, K., and L. H. Horn, 1982: Available potential energy in the Northern Hemisphere during the FGGE year. Tellus, 34, 526539, https://doi.org/10.3402/tellusa.v34i6.10838.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dutton, J. A., and D. R. Johnson, 1967: The theory of available potential energy and a variational approach to atmospheric energetics. Advances in Geophysics, Vol. 12, Academic Press, 333–436, https://doi.org/10.1016/S0065-2687(08)60379-9.

    • Crossref
    • Export Citation
  • Garreaud, R. D., 2001: Subtropical cold surges: Regional aspects and global distribution. Int. J. Climatol., 21, 11811197, https://doi.org/10.1002/joc.687.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grumm, R. H., and R. Hart, 2001: Standardized anomalies applied to significant cold season weather events: Preliminary findings. Wea. Forecasting, 16, 736754, https://doi.org/10.1175/1520-0434(2001)016<0736:SAATSC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gyakum, J. R., 2008: The application of Fred Sanders’ teaching to current research on extreme cold-season precipitation events in the Saint Lawrence River valley region. Synoptic-Dynamic Meteorology and Weather Analysis Forecasting: A Tribute to Fred Sanders, Meteor. Monogr., No. 55, Amer. Meteor. Soc., 241–250, https://doi.org/10.1175/0065-9401-33.55.241.

    • Crossref
    • Export Citation
  • Hansen, A. R., and R. L. Nagle, 1984: Estimates of the generation of available potential energy by infrared radiation. Mon. Wea. Rev., 112, 13701377, https://doi.org/10.1175/1520-0493(1984)112<1370:EOTGOA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, D. R., 1967: The role of terrestrial radiation in the generation of zonal and eddy available potential energy. Tellus, 19, 517539, https://doi.org/10.1111/j.2153-3490.1967.tb01506.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, D. R., 1970: The available potential energy of storms. J. Atmos. Sci., 27, 727741, https://doi.org/10.1175/1520-0469(1970)027<0727:TAPEOS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kanamitsu, M., W. Ebisuzaki, J. Woollen, S.-K. Yang, J. J. Hnilo, M. Fiorino, and G. L. Potter, 2002: NCEP–DOE AMIP-II Reanalysis (R-2). Bull. Amer. Meteor. Soc., 83, 16311643, https://doi.org/10.1175/BAMS-83-11-1631.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krueger, A. F., J. S. Winston, and D. A. Haines, 1965: Computations of atmospheric energy and its transformation for the Northern Hemisphere for a recent five-year period. Mon. Wea. Rev., 93, 227238, https://doi.org/10.1175/1520-0493(1965)093<0227:COAEAI>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lau, N.-C., and K.-M. Lau, 1984: The structure and energetics of midlatitude disturbances accompanying cold-air outbreaks over East Asia. Mon. Wea. Rev., 112, 13091327, https://doi.org/10.1175/1520-0493(1984)112<1309:TSAEOM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, S. C., and P. J. Smith, 1979: Diabatic heating and generation of available potential energy in a tornado-producing extratropical cyclone. Mon. Wea. Rev., 107, 11691183, https://doi.org/10.1175/1520-0493(1979)107<1169:DHAGOA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lorenz, E. N., 1955: Available potential energy and the maintenance of the general circulation. Tellus, 7, 157167, https://doi.org/10.3402/tellusa.v7i2.8796.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lorenz, E. N., 1960: Energy and numerical weather prediction. Tellus, 12, 364373, https://doi.org/10.3402/tellusa.v12i4.9420.

  • Marques, C. A. F., A. Rocha, J. Corte-Real, J. M. Castanheira, J. Ferreira, and P. Melo-Gonçalves, 2009: Global atmospheric energetics from NCEP–reanalysis 2 and ECMWF–ERA40 reanalysis. Int. J. Climatol., 29, 159174, https://doi.org/10.1002/joc.1704.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Muench, H. S., 1965: On the dynamics of the wintertime stratosphere circulation. J. Atmos. Sci., 22, 349360, https://doi.org/10.1175/1520-0469(1965)022<0349:OTDOTW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O’Gorman, P. A., 2010: Understanding the varied response of the extratropical storm tracks to climate change. Proc. Natl. Acad. Sci. USA, 107, 19 17619 180, https://doi.org/10.1073/pnas.1011547107.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oort, A. H., 1964: On estimates of the atmospheric energy cycle. Mon. Wea. Rev., 92, 483493, https://doi.org/10.1175/1520-0493(1964)092<0483:OEOTAE>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oort, A. H., and J. P. Peixóto, 1974: The annual cycle of the energetics of the atmosphere on a planetary scale. J. Geophys. Res., 79, 27052719, https://doi.org/10.1029/JC079i018p02705.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oort, A. H., and J. P. Peixóto, 1976: On the variability of the atmospheric energy cycle within a 5-year period. J. Geophys. Res., 81, 36433659, https://doi.org/10.1029/JC081i021p03643.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Orlanski, I., and E. K. M. Chang, 1993: Ageostrophic geopotential fluxes in downstream and upstream development of baroclinic waves. J. Atmos. Sci., 50, 212225, https://doi.org/10.1175/1520-0469(1993)050<0212:AGFIDA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Payne, A. E., and G. Magnusdottir, 2014: Dynamics of landfalling atmospheric rivers over the North Pacific in 30 years of MERRA reanalysis. J. Climate, 27, 71337150, https://doi.org/10.1175/JCLI-D-14-00034.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peixóto, J. P., and A. H. Oort, 1974: The annual distribution of atmospheric energy on a planetary scale. J. Geophys. Res., 79, 21492159, https://doi.org/10.1029/JC079i015p02149.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pezza, A. B., J. A. P. Veiga, I. Simmonds, K. Keay, and M. dos Santos Mesquita, 2010: Environmental energetics of an exceptional high-latitude storm. Atmos. Sci. Lett., 11, 3945, https://doi.org/10.1002/asl.253.

    • Search Google Scholar
    • Export Citation
  • Romanski, J., and W. B. Rossow, 2013: Contributions of individual atmospheric diabatic heating processes to the generation of available potential energy. J. Climate, 26, 42444263, https://doi.org/10.1175/JCLI-D-12-00457.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, P. J., and P. M. Dare, 1986: The kinetic and available potential energy budget of a winter extratropical cyclone system. Tellus, 38A, 4959, https://doi.org/10.3402/tellusa.v38i1.11697.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thorncroft, C. D., B. J. Hoskins, and M. E. McIntyre, 1993: Two paradigms of baroclinic-wave life-cycle behavior. Quart. J. Roy. Meteor. Soc., 119, 1755, https://doi.org/10.1002/qj.49711950903.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Turner, J. K., J. Gyakum, and S. M. Milrad, 2013: A thermodynamic analysis of an intense North American arctic air mass. Mon. Wea. Rev., 141, 166181, https://doi.org/10.1175/MWR-D-12-00176.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Veiga, J. A. P., A. B. Pezza, I. Simmonds, and P. L. Silva Dias, 2008: An analysis of the environmental energetics associated with the transition of the first South Atlantic hurricane. Geophys. Res. Lett., 35, L15806, https://doi.org/10.1029/2008GL034511.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wiin-Nielsen, A., and J. Brown, 1962: On diagnostic computations of atmospheric heat sources and sinks and the generation of available potential energy. Proc. Int. Symp. Numerical Weather Prediction, Tokyo, Japan, Meteorological Society of Japan, 593–613.

  • Winston, J. S., and A. F. Krueger, 1961: Some aspects of a cycle of available potential energy. Mon. Wea. Rev., 89, 307318, https://doi.org/10.1175/1520-0493-89.9.307.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wintels, W., and J. R. Gyakum, 2000: Synoptic climatology of Northern Hemisphere available potential energy collapses. Tellus, 52A, 347364, https://doi.org/10.3402/tellusa.v52i4.12273.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 435 136 6
PDF Downloads 308 85 4