Comments on “Revisiting the Balanced and Unbalanced Aspects of Tropical Cyclone Intensification”

Michael T. Montgomery Department of Meteorology, Naval Postgraduate School, Monterey, California

Search for other papers by Michael T. Montgomery in
Current site
Google Scholar
PubMed
Close
and
Roger K. Smith Meteorological Institute, Ludwig-Maximilians University of Munich, Munich, Germany

Search for other papers by Roger K. Smith in
Current site
Google Scholar
PubMed
Close
Restricted access

For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Professor M. T. Montgomery, mtmontgo@nps.edu

The original article that was the subject of this comment/reply can be found at http://journals.ametsoc.org/doi/abs/10.1175/JAS-D-17-0046.1.

For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Professor M. T. Montgomery, mtmontgo@nps.edu

The original article that was the subject of this comment/reply can be found at http://journals.ametsoc.org/doi/abs/10.1175/JAS-D-17-0046.1.

Save
  • Abarca, S. F., and M. T. Montgomery, 2015: Departures from axisymmetric balance dynamics during secondary eyewall formation. J. Atmos. Sci., 72, 8287, https://doi.org/10.1175/JAS-D-14-0151.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Abarca, S. F., M. T. Montgomery, and J. C. McWilliams, 2015: The azimuthally averaged boundary layer structure of a numerically simulated major hurricane. J. Adv. Model. Earth Syst., 7, 12071219, https://doi.org/10.1002/2015MS000457.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anthes, R. A., 1971: Iterative solutions to the steady-state axisymmetric boundary-layer equations under an intense pressure gradient. Mon. Wea. Rev., 99, 261268, https://doi.org/10.1175/1520-0493(1971)099<0261:ISTTSA>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anthes, R. A., 1974: The dynamics and energetics of mature tropical cyclones. Rev. Geophys. Space Phys., 12, 495521, https://doi.org/10.1029/RG012i003p00495.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., 2012: Effects of surface exchange coefficients and turbulence length scales on the intensity and structure of numerically simulated hurricanes. Mon. Wea. Rev., 140, 11251143, https://doi.org/10.1175/MWR-D-11-00231.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., and R. Rotunno, 2009: Evaluation of an analytical model for the maximum intensity of tropical cyclones. J. Atmos. Sci., 66, 30423060, https://doi.org/10.1175/2009JAS3038.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bui, H. H., R. K. Smith, M. T. Montgomery, and J. Peng, 2009: Balanced and unbalanced aspects of tropical-cyclone intensification. Quart. J. Roy. Meteor. Soc., 135, 17151731, https://doi.org/10.1002/qj.502.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carrier, G. C., 1971: Swirling flow boundary layers. J. Fluid Mech., 49, 133144, https://doi.org/10.1017/S0022112071001964.

  • Emanuel, K. A., 1986: An air–sea interaction theory for tropical cyclones. Part I: Steady state maintenance. J. Atmos. Sci., 43, 585604, https://doi.org/10.1175/1520-0469(1986)043<0585:AASITF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1989: The finite amplitude nature of tropical cyclogenesis. J. Atmos. Sci., 46, 34313456, https://doi.org/10.1175/1520-0469(1989)046<3431:TFANOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1995: Sensitivity of tropical cyclone to surface exchange coefficients and a revised steady-state model incorporating eye dynamics. J. Atmos. Sci., 52, 39693976, https://doi.org/10.1175/1520-0469(1995)052<3969:SOTCTS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., and R. Rotunno, 2011: Self-stratification of tropical cyclone outflow. Part I: Implications for storm structure. J. Atmos. Sci., 68, 22362249, https://doi.org/10.1175/JAS-D-10-05024.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gopalakrishnan, S. G., F. Marks Jr., J. A. Zhang, X. Zhang, J. Bao, and V. Tallapragada, 2013: A study of the impacts of vertical diffusion on the structure and intensity of the tropical cyclones using the high-resolution HWRF system. J. Atmos. Sci., 70, 524541, https://doi.org/10.1175/JAS-D-11-0340.1; Corrigendum, 70, 2336, https://doi.org/10.1175/JAS-D-13-0134.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heng, J., and Y. Wang, 2016: Nonlinear response of a tropical cyclone vortex to prescribed eyewall heating with and without surface friction in TCM4: Implications for tropical cyclone intensification. J. Atmos. Sci., 73, 13151333, https://doi.org/10.1175/JAS-D-15-0164.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heng, J., Y. Wang, and W. Zhou, 2017: Revisiting the balanced and unbalanced aspects of tropical cyclone intensification. J. Atmos. Sci., 74, 25752591, https://doi.org/10.1175/JAS-D-17-0046.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, Y.-H., M. T. Montgomery, and C.-C. Wu, 2012: Concentric eyewall formation in Typhoon Sinlaku (2008). Part II: Axisymmetric dynamical processes. J. Atmos. Sci., 69, 662674, https://doi.org/10.1175/JAS-D-11-0114.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kepert, J. D., and Y. Wang, 2001: The dynamics of boundary layer jets within the tropical cyclone core. Part II: Nonlinear enhancement. J. Atmos. Sci., 58, 24852501, https://doi.org/10.1175/1520-0469(2001)058<2485:TDOBLJ>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kilroy, G., and R. K. Smith, 2017: The effects of initial vortex size on tropical cyclogenesis and intensification. Quart. J. Roy. Meteor. Soc., 143, 28322845, https://doi.org/10.1002/qj.3134.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kilroy, G., R. K. Smith, and M. T. Montgomery, 2016: Why do model tropical cyclones grow progressively in size and decay in intensity after reaching maturity? J. Atmos. Sci., 73, 487503, https://doi.org/10.1175/JAS-D-15-0157.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kilroy, G., R. K. Smith, and M. T. Montgomery, 2017a: A unified view of tropical cyclogenesis and intensification. Quart. J. Roy. Meteor. Soc., 143, 450462, https://doi.org/10.1002/qj.2934.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kilroy, G., M. T. Montgomery, and R. K. Smith, 2017b: The role of boundary layer friction on tropical cyclogenesis and subsequent intensification. Quart. J. Roy. Meteor. Soc., 143, 25242536, https://doi.org/10.1002/qj.3104.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kilroy, G., R. K. Smith, and M. T. Montgomery, 2018: The role of heating and cooling associated with ice processes on tropical cyclogenesis and intensification. Quart. J. Roy. Meteor. Soc., 144, 99114, https://doi.org/10.1002/qj.3187.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuo, H. L., 1971: Axisymmetric flows in the boundary layer of a maintained vortex. J. Atmos. Sci., 28, 2041, https://doi.org/10.1175/1520-0469(1971)028<0020:AFITBL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., and R. K. Smith, 2014: Paradigms for tropical cyclone intensification. Aust. Meteor. Oceanogr. J., 64, 3766.

  • Montgomery, M. T., and R. K. Smith, 2017: Recent developments in the fluid dynamics of tropical cyclones. Annu. Rev. Fluid Mech., 49, 541574, https://doi.org/10.1146/annurev-fluid-010816-060022.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., J. A. Zhang, and R. K. Smith, 2014: An analysis of the observed low-level structure of rapidly intensifying and mature Hurricane Earl (2010). Quart. J. Roy. Meteor. Soc., 140, 21322146, https://doi.org/10.1002/qj.2283.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ooyama, K. V., 1969: Numerical simulation of the life cycle of tropical cyclones. J. Atmos. Sci., 26, 340, https://doi.org/10.1175/1520-0469(1969)026<0003:NSOTLC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Persing, J., M. T. Montgomery, J. C. McWilliams, and R. K. Smith, 2013: Asymmetric and axisymmetric dynamics of tropical cyclones. Atmos. Chem. Phys., 13, 12 29912 341, https://doi.org/10.5194/acp-13-12299-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rotunno, R., and G. Bryan, 2012: Effects of parameterized diffusion on simulated hurricanes. J. Atmos. Sci., 69, 22842299, https://doi.org/10.1175/JAS-D-11-0204.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmidt, C. J., and R. K. Smith, 2016: Tropical cyclone evolution in a minimal axisymmetric model revisited. Quart. J. Roy. Meteor. Soc., 142, 15051516, https://doi.org/10.1002/qj.2753.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shapiro, L. J., 1983: The asymmetric boundary-layer flow under a translating hurricane. J. Atmos. Sci., 40, 19841998, https://doi.org/10.1175/1520-0469(1983)040<1984:TABLFU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Slocum, C. J., G. J. Williams, R. K. Taft, and W. H. Schubert, 2014: Tropical cyclone boundary layer shocks. arXiv, https://arxiv.org/abs/1405.7939.

  • Smith, R. K., 1968: The surface boundary layer of a hurricane. Tellus, 20, 473484, https://doi.org/10.1111/j.2153-3490.1968.tb00388.x.

  • Smith, R. K., and M. T. Montgomery, 2008: Balanced depth-averaged boundary layers used in hurricane models. Quart. J. Roy. Meteor. Soc., 134, 13851395, https://doi.org/10.1002/qj.296.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, R. K., and S. Vogl, 2008: A simple model of the hurricane boundary layer revisited. Quart. J. Roy. Meteor. Soc., 134, 337351, https://doi.org/10.1002/qj.216.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, R. K., and G. L. Thomsen, 2010: Dependence of tropical-cyclone intensification on the boundary layer representation in a numerical model. Quart. J. Roy. Meteor. Soc., 136, 16711685, https://doi.org/10.1002/qj.687.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, R. K., and M. T. Montgomery, 2015: Toward clarity on tropical cyclone intensification. J. Atmos. Sci., 72, 30203031, https://doi.org/10.1175/JAS-D-15-0017.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, R. K., and M. T. Montgomery, 2016: Understanding hurricanes. Weather, 71, 219223, https://doi.org/10.1002/wea.2776.

  • Smith, R. K., M. T. Montgomery, and S. V. Nguyen, 2009: Tropical cyclone spin-up revisited. Quart. J. Roy. Meteor. Soc., 135, 13211335, https://doi.org/10.1002/qj.428.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, R. K., J. Zhang, and M. T. Montgomery, 2017: The dynamics of intensification in an HWRF simulation of Hurricane Earl (2010). Quart. J. Roy. Meteor. Soc., 143, 293308, https://doi.org/10.1002/qj.2922.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, R. K., M. T. Montgomery, and H. Bui, 2018: Axisymmetric balance dynamics of tropical cyclone intensification and its breakdown revisited. J. Atmos. Sci., https://doi.org/10.1175/JAS-D-17-0179.1, in press.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stern, D. P., J. L. Vigh, D. S. Nolan, and F. Zhang, 2015: Revisiting the relationship between eyewall contraction and intensification. J. Atmos. Sci., 72, 12831306, https://doi.org/10.1175/JAS-D-14-0261.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vogl, S., and R. K. Smith, 2009: Limitations of a linear model for the hurricane boundary layer. Quart. J. Roy. Meteor. Soc., 135, 839850, https://doi.org/10.1002/qj.390.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, D.-L., Y. Liu, and M. K. Yau, 2001: A multiscale numerical study of Hurricane Andrew (1992). Part IV: Unbalanced flows. Mon. Wea. Rev., 129, 92107, https://doi.org/10.1175/1520-0493(2001)129<0092:AMNSOH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, J. A., D. S. Nolan, R. F. Rogers, and V. Tallapragada, 2015: Evaluating the impact of improvements in the boundary layer parameterization on hurricane intensity and structure forecasts in HWRF. Mon. Wea. Rev., 143, 31363155, https://doi.org/10.1175/MWR-D-14-00339.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 492 142 20
PDF Downloads 252 38 0