A Parameterization Scheme for Air–Sea Surface Interface Fluxes: Design and Stand-Alone Experiments

Haixiong Zhuang Tianjin Meteorological Service, Tianjin, China

Search for other papers by Haixiong Zhuang in
Current site
Google Scholar
PubMed
Close
,
Xiaojun Yang Tianjin Meteorological Observatory, Tianjin, China

Search for other papers by Xiaojun Yang in
Current site
Google Scholar
PubMed
Close
, and
Zhenling Wu Tianjin Meteorological Observatory, Tianjin, China

Search for other papers by Zhenling Wu in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Observations show that sea surface temperature (SST) can vary up to several degrees in a day and sea surface energy fluxes up to a few hundreds of watts per square meter. For synoptic- and subsynoptic-scale atmospheric modeling, there remains a need for the parameterization of air–sea surface interaction using simple schemes. In this paper, such a simple scheme, Atmosphere–Ocean Surface Interaction Scheme (AOSIS), is presented so that the short time variations in SST and energy fluxes can be estimated using a small number of atmospheric and oceanic bulk quantities. The scheme consists of three components: a two-layer ocean temperature model, a wind-wave model, and a surface flux model. Numerical experiments show that the scheme performs well in simulating SST and the air–sea exchanges. Relative to other schemes, AOSIS shows the following improvements: 1) it simulates SST and the cool-skin and warm-layer effect of the ocean mixed layer without the input of ocean bulk temperature of the mixed layer as a prior condition, which is required by most one-layer models; 2) the depth of the ocean mixed layer is allowed to vary according to surface wind stress and buoyancy flux; and 3) a method for computing ocean surface roughness length is proposed, which accounts for the aerodynamic effect of wind-generated waves. For experimental studies, AOSIS can be used in stand-alone mode for the calculation of SST through a small number of bulk measurements. AOSIS can also be used as an interface between the atmosphere and ocean models to be coupled together.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Haixiong Zhuang, hxzhuang@sina.com

Abstract

Observations show that sea surface temperature (SST) can vary up to several degrees in a day and sea surface energy fluxes up to a few hundreds of watts per square meter. For synoptic- and subsynoptic-scale atmospheric modeling, there remains a need for the parameterization of air–sea surface interaction using simple schemes. In this paper, such a simple scheme, Atmosphere–Ocean Surface Interaction Scheme (AOSIS), is presented so that the short time variations in SST and energy fluxes can be estimated using a small number of atmospheric and oceanic bulk quantities. The scheme consists of three components: a two-layer ocean temperature model, a wind-wave model, and a surface flux model. Numerical experiments show that the scheme performs well in simulating SST and the air–sea exchanges. Relative to other schemes, AOSIS shows the following improvements: 1) it simulates SST and the cool-skin and warm-layer effect of the ocean mixed layer without the input of ocean bulk temperature of the mixed layer as a prior condition, which is required by most one-layer models; 2) the depth of the ocean mixed layer is allowed to vary according to surface wind stress and buoyancy flux; and 3) a method for computing ocean surface roughness length is proposed, which accounts for the aerodynamic effect of wind-generated waves. For experimental studies, AOSIS can be used in stand-alone mode for the calculation of SST through a small number of bulk measurements. AOSIS can also be used as an interface between the atmosphere and ocean models to be coupled together.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Haixiong Zhuang, hxzhuang@sina.com
Save
  • Anderson, S. P., R. A. Weller, and R. B. Lukas, 1996: Surface buoyancy forcing and the mixed layer of the western Pacific warm pool: Observations and 1D model results. J. Climate, 9, 30563085, https://doi.org/10.1175/1520-0442(1996)009<3056:SBFATM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Businger, J. A., 1966: Transfer of momentum and heat in the atmospheric boundary layer. Proc. Arctic Heat Budget and Atmospheric Circulation, Santa Monica, CA, RAND Corporation, 305–332.

  • Chan, J. C. L., Y. Duan, and L. K. Shay, 2001: Tropical cyclone intensity change from a simple ocean–atmosphere coupled model. J. Atmos. Sci., 58, 154172, https://doi.org/10.1175/1520-0469(2001)058<0154:TCICFA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Charnock, H., 1955: Wind stress on a water surface. Quart. J. Roy. Meteor. Soc., 81, 639640, https://doi.org/10.1002/qj.49708135027.

  • Donelan, M. A., F. W. Dobson, S. D. Smith, and R. J. Anderson, 1993: On the dependence of sea surface roughness on wave development. J. Phys. Oceanogr., 23, 21432149, https://doi.org/10.1175/1520-0485(1993)023<2143:OTDOSS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Drennan, W. M., H. C. Graber, D. Hauser, and C. Quentin, 2003: On the wave age dependence of wind stress over pure wind seas. J. Geophys. Res., 108, 8062, https://doi.org/10.1029/2000JC000715.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dyer, A. J., 1974: A review of flux-profile relationships. Bound.-Layer Meteor., 7, 363372, https://doi.org/10.1007/BF00240838.

  • Enfield, D. B., 1986: Zonal and seasonal variations in the near surface heat balance of the equatorial ocean. J. Phys. Oceanogr., 16, 10381054, https://doi.org/10.1175/1520-0485(1986)016<1038:ZASVOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fairall, C. W., E. F. Bradley, J. S. Godfrey, G. A. Wick, J. B. Edson, and G. S. Young, 1996a: Cool-skin and warm-layer effects on sea surface temperature. J. Geophys. Res., 101, 12951308, https://doi.org/10.1029/95JC03190.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fairall, C. W., E. F. Bradley, D. P. Rogers, J. B. Edson, and G. S. Young, 1996b: Bulk parameterization of air–sea fluxes for Tropical Ocean-Global Atmosphere Coupled-Ocean Atmosphere Response Experiment. J. Geophys. Res., 101, 37473764, https://doi.org/10.1029/95JC03205.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fairall, C. W., E. F. Bradley, J. E. Hare, A. A. Grachev, and J. B. Edson, 2003: Bulk parameterization of air–sea fluxes: Updates and verification for the COARE algorithm. J. Climate, 16, 571591, https://doi.org/10.1175/1520-0442(2003)016<0571:BPOASF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garratt, J. R., 1977: Review of drag coefficients over oceans and continents. Mon. Wea. Rev., 105, 915929, https://doi.org/10.1175/1520-0493(1977)105<0915:RODCOO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garratt, J. R., 1992: The Atmospheric Boundary Layer. Cambridge University Press, 334 pp.

  • Godfrey, J. S., and A. C. M. Beljaars, 1991: On the turbulent fluxes of buoyancy, heat, and moisture at the air-sea interface at low wind speeds. J. Geophys. Res., 96, 22 04322 048, https://doi.org/10.1029/91JC02015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grachev, A. A., C. W. Fairall, and E. F. Bradley, 2000: Convective profile constants revisited. Bound.-Layer Meteor., 94, 495515, https://doi.org/10.1023/A:1002452529672.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hayes, S., P. Chang, and M. McPhaden, 1991: Variability of the sea surface temperature in the eastern equatorial Pacific during 1986–88. J. Geophys. Res., 96, 10 55310 566, https://doi.org/10.1029/91JC00942.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hsu, S. A., 1974: A dynamic roughness equation and its application to wind stress determination at the air-sea interface. J. Phys. Oceanogr., 4, 116120, https://doi.org/10.1175/1520-0485(1974)004<0116:ADREAI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Janssen, P. A. E. M., 1982: Quasilinear approximation for the spectrum of wind-generated water waves. J. Fluid Mech., 117, 493506, https://doi.org/10.1017/S0022112082001736.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Janssen, P. A. E. M., 1991: Quasi-linear theory of wind-wave generation applied to wave forecasting. J. Phys. Oceanogr., 21, 16311642, https://doi.org/10.1175/1520-0485(1991)021<1631:QLTOWW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Janssen, P. A. E. M., G. J. Komen, and W. J. P. de Voogt, 1984: An operational coupled hybrid wave prediction model. J. Geophys. Res., 89, 36353654, https://doi.org/10.1029/JC089iC03p03635.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jeffreys, H., 1925: On the formation of waves by wind. Proc. Roy. Soc. London, 107A, 189206, https://doi.org/10.1098/rspa.1925.0015.

  • Jeffreys, H., 1926: On the formation of waves by wind (second paper). Proc. Roy. Soc. London, 110A, 241247, https://doi.org/10.1098/rspa.1926.0014.

    • Search Google Scholar
    • Export Citation
  • Johnson, H. K., J. Højstrup, H. J. Vested, and S. E. Larsen, 1998: Dependence of sea surface roughness on wind waves. J. Phys. Oceanogr., 28, 17021716, https://doi.org/10.1175/1520-0485(1998)028<1702:OTDOSS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Komen, G. J., L. Cavaleri, M. Donelan, K. Hasselmann, S. Hasselmann, and P. A. E. M. Janssen, 1996: Dynamics and Modelling of Ocean Waves. Cambridge University Press, 556 pp.

  • Kraus, E. B., and J. A. Businger, 1994: The planetary boundary layer. Atmosphere–Ocean Interaction, Oxford University Press, 182–235.

    • Crossref
    • Export Citation
  • Large, W. G., J. C. McWilliams, and S. C. Doney, 1994: Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization. Rev. Geophys., 32, 363403, https://doi.org/10.1029/94RG01872.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, W. T., K. B. Katsaros, and J. A. Businger, 1979: Bulk parameterization of the air–sea exchange of heat and water vapor including the molecular constraints at the interface. J. Atmos. Sci., 36, 17221735, https://doi.org/10.1175/1520-0469(1979)036<1722:BPOASE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lukas, R., and P. Webster, 1992: TOGA-COARE, Tropical Ocean Global Atmosphere Program and Coupled Ocean–Atmosphere Response Experiment. Oceanus, 35, 6265.

    • Search Google Scholar
    • Export Citation
  • Miles, J. W., 1957: On the generation of surface waves by shear flows. J. Fluid Mech., 3, 185204, https://doi.org/10.1017/S0022112057000567.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nikuradse, J., 1933: Strömungsgesetze in rauhen Rohren. Forschungsheft auf dem Gebiete des Ingenieurwesens, Vol. 361, VDI, 22 pp.

  • Oost, W. A., G. J. Komen, C. M. J. Jacobs, and C. Van Oort, 2002: New evidence for a relation between wind stress and wave age from measurements during ASGAMAGE. Bound.-Layer Meteor., 103, 409438, https://doi.org/10.1023/A:1014913624535.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Panofsky, H. A., and J. A. Dutton, 1984: Atmospheric Turbulence: Models and Methods for Engineering Applications. Wiley-Interscience, 397 pp.

  • Phillips, O. M., 1957: On the generation of waves by turbulent wind. J. Fluid Mech., 2, 417445, https://doi.org/10.1017/S0022112057000233.

  • Price, J. F., R. A. Weller, and R. Pinkel, 1986: Diurnal cycling: Observations and models of the upper ocean response to diurnal heating, cooling, and wind mixing. J. Geophys. Res., 91, 84118427, https://doi.org/10.1029/JC091iC07p08411.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saunders, P. M., 1967: The temperature at the ocean–air interface. J. Atmos. Sci., 24, 269273, https://doi.org/10.1175/1520-0469(1967)024<0269:TTATOA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schumann, U., 1988: Minimum friction velocity and heat transfer in the rough surface layer of a convective boundary layer. Bound.-Layer Meteor., 44, 311326, https://doi.org/10.1007/BF00123019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, S. D., 1981: Comment [on “A new evaluation of the wind stress coefficient over water surfaces”]. J. Geophys. Res., 86, 4307–4307, https://doi.org/10.1029/JC086iC05p04307.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, S. D., 1988: Coefficients for sea surface wind stress, heat flux, and wind profiles as a function of wind speed and temperature. J. Geophys. Res., 93, 15 46715 472, https://doi.org/10.1029/JC093iC12p15467.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, S. D., 1989: Water vapor flux at the sea surface. Bound.-Layer Meteor., 47, 277293, https://doi.org/10.1007/BF00122334.

  • Smith, S. D., and Coauthors, 1992: Sea surface wind stress and drag coefficients: The HEXOS results. Bound.-Layer Meteor., 60, 109142, https://doi.org/10.1007/BF00122064.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, S. D., C. W. Fairall, G. L. Geernaert, and L. Hasse, 1996: Air-sea fluxes: 25 years of progress. Bound.-Layer Meteor., 78, 247290, https://doi.org/10.1007/BF00120938.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Snyder, R. L., F. W. Dobson, J. A. Elliot, and R. B. Long, 1981: Array measurements of atmospheric pressure fluctuations above surface gravity waves. J. Fluid Mech., 102, 159, https://doi.org/10.1017/S0022112081002528.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Soloviev, A. V., 1982: On vertical structure of the thin surface layer of the ocean at weak winds. Fiz. Atmos. Okeana, 18, 579585.

  • Sui, C.-H., X. Li, K.-M. Lau, and D. Adamec, 1997: Multiscale air–sea interactions during TOGA COARE. Mon. Wea. Rev., 125, 448462, https://doi.org/10.1175/1520-0493(1997)125<0448:MASIDT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sverdrup, H. U., M. W. Johnson, and R. H. Fleming, 1942: The Oceans: Their Physics, Chemistry, and General Biology. Prentice-Hall, 1087 pp.

  • Taylor, P. K., and M. J. Yelland, 2001: The dependence of sea surface roughness on the height and steepness of the waves. J. Phys. Oceanogr., 31, 572590, https://doi.org/10.1175/1520-0485(2001)031<0572:TDOSSR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, W., and M. J. McPhaden, 2000: The surface-layer heat balance in the equatorial Pacific Ocean. Part II: Interannual variability. J. Phys. Oceanogr., 30, 29893008, https://doi.org/10.1175/1520-0485(2001)031<2989:TSLHBI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, J., 1980: Wind stress coefficients over the sea surface near neutral conditions—A revisit. J. Phys. Oceanogr., 10, 727740, https://doi.org/10.1175/1520-0485(1980)010<0727:WSCOSS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, X., and M. W. Moncrieff, 2001: Long-term behavior of cloud systems in TOGA COARE and their interactions with radiative and surface processes. Part III: Effects on the energy budget and SST. J. Atmos. Sci., 58, 11551168, https://doi.org/10.1175/1520-0469(2001)058<1155:LTBOCS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yelland, M. J., B. I. Moat, P. K. Taylor, R. W. Pascal, J. Hutchings, and V. C. Cornell, 1998: Wind stress measurements from the open ocean corrected for airflow distortion by the ship. J. Phys. Oceanogr., 28, 15111526, https://doi.org/10.1175/1520-0485(1998)028<1511:WSMFTO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zeng, X., M. Zhao, R. E. Dickinson, and Y. He, 1999: A multiyear hourly sea surface skin temperature data set derived from the TOGA TAO bulk temperature and wind speed over the tropical Pacific. J. Geophys. Res., 104, 15251536, https://doi.org/10.1029/1998JC900060.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 325 54 8
PDF Downloads 250 51 5