Improvement of the Simulation of Cloud Longwave Scattering in Broadband Radiative Transfer Models

Guanglin Tang Department of Atmospheric Sciences, Texas A&M University, College Station, Texas

Search for other papers by Guanglin Tang in
Current site
Google Scholar
PubMed
Close
,
Ping Yang Department of Atmospheric Sciences, Texas A&M University, College Station, Texas

Search for other papers by Ping Yang in
Current site
Google Scholar
PubMed
Close
,
George W. Kattawar Department of Physics and Astronomy, Texas A&M University, College Station, Texas
Institute for Quantum Science and Engineering, Texas A&M University, College Station, Texas

Search for other papers by George W. Kattawar in
Current site
Google Scholar
PubMed
Close
,
Xianglei Huang Department of Climate and Space Sciences and Engineering, University of Michigan, Ann Arbor, Michigan

Search for other papers by Xianglei Huang in
Current site
Google Scholar
PubMed
Close
,
Eli J. Mlawer Atmospheric and Environmental Research, Inc., Cambridge, Massachusetts

Search for other papers by Eli J. Mlawer in
Current site
Google Scholar
PubMed
Close
,
Bryan A. Baum Space Science and Engineering Center, University of Wisconsin–Madison, Madison, Wisconsin

Search for other papers by Bryan A. Baum in
Current site
Google Scholar
PubMed
Close
, and
Michael D. King Laboratory for Atmospheric and Space Physics, University of Colorado Boulder, Boulder, Colorado
Department of Atmospheric Sciences, Texas A&M University, College Station, Texas

Search for other papers by Michael D. King in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Cloud longwave scattering is generally neglected in general circulation models (GCMs), but it plays a significant and highly uncertain role in the atmospheric energy budget as demonstrated in recent studies. To reduce the errors caused by neglecting cloud longwave scattering, two new radiance adjustment methods are developed that retain the computational efficiency of broadband radiative transfer simulations. In particular, two existing scaling methods and the two new adjustment methods are implemented in the Rapid Radiative Transfer Model (RRTM). The results are then compared with those based on the Discrete Ordinate Radiative Transfer model (DISORT) that explicitly accounts for multiple scattering by clouds. The two scaling methods are shown to improve the accuracy of radiative transfer simulations for optically thin clouds but not effectively for optically thick clouds. However, the adjustment methods reduce computational errors over a wide range, from optically thin to thick clouds. With the adjustment methods, the errors resulting from neglecting cloud longwave scattering are reduced to less than 2 W m−2 for the upward irradiance at the top of the atmosphere and less than 0.5 W m−2 for the surface downward irradiance. The adjustment schemes prove to be more accurate and efficient than a four-stream approximation that explicitly accounts for multiple scattering. The neglect of cloud longwave scattering results in an underestimate of the surface downward irradiance (cooling effect), but the errors are almost eliminated by the adjustment methods (warming effect).

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Guanglin Tang, tangguanglin@gmail.com

Abstract

Cloud longwave scattering is generally neglected in general circulation models (GCMs), but it plays a significant and highly uncertain role in the atmospheric energy budget as demonstrated in recent studies. To reduce the errors caused by neglecting cloud longwave scattering, two new radiance adjustment methods are developed that retain the computational efficiency of broadband radiative transfer simulations. In particular, two existing scaling methods and the two new adjustment methods are implemented in the Rapid Radiative Transfer Model (RRTM). The results are then compared with those based on the Discrete Ordinate Radiative Transfer model (DISORT) that explicitly accounts for multiple scattering by clouds. The two scaling methods are shown to improve the accuracy of radiative transfer simulations for optically thin clouds but not effectively for optically thick clouds. However, the adjustment methods reduce computational errors over a wide range, from optically thin to thick clouds. With the adjustment methods, the errors resulting from neglecting cloud longwave scattering are reduced to less than 2 W m−2 for the upward irradiance at the top of the atmosphere and less than 0.5 W m−2 for the surface downward irradiance. The adjustment schemes prove to be more accurate and efficient than a four-stream approximation that explicitly accounts for multiple scattering. The neglect of cloud longwave scattering results in an underestimate of the surface downward irradiance (cooling effect), but the errors are almost eliminated by the adjustment methods (warming effect).

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Guanglin Tang, tangguanglin@gmail.com
Save
  • Baran, A. J., 2005: The dependence of cirrus infrared radiative properties on ice crystal geometry and shape of the size distribution function. Quart. J. Roy. Meteor. Soc., 131, 11291142, https://doi.org/10.1256/qj.04.91.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baran, A. J., 2009: A review of the light scattering properties of cirrus. J. Quant. Spectrosc. Radiat. Transfer, 110, 12391260, https://doi.org/10.1016/j.jqsrt.2009.02.026.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baran, A. J., 2012: From the single-scattering properties of ice crystals to climate prediction: A way forward. Atmos. Res., 112, 4569, https://doi.org/10.1016/j.atmosres.2012.04.010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chou, M.-D., K.-T. Lee, S.-C. Tsay, and Q. Fu, 1999: Parameterization for cloud longwave scattering for use in atmospheric models. J. Climate, 12, 159169, https://doi.org/10.1175/1520-0442-12.1.159.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • COESA, 1976: U.S. Standard Atmosphere, 1976. NOAA, 227 pp.

  • Costa, S. M. S., and K. P. Shine, 2006: An estimate of the global impact of multiple scattering by clouds on outgoing long‐wave radiation. Quart. J. Roy. Meteor. Soc., 132, 885895, https://doi.org/10.1256/qj.05.169.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ding, J., P. Yang, G. W. Kattawar, M. D. King, S. Platnick, and K. G. Meyer, 2017: Validation of quasi-invariant ice cloud radiative quantities with MODIS satellite-based cloud property retrievals. J. Quant. Spectrosc. Radiat. Transfer, 194, 4757, https://doi.org/10.1016/j.jqsrt.2017.03.025.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Edmonds, A. R., 2016: Angular Momentum in Quantum Mechanics. Princeton University Press, 160 pp.

  • Foot, J. S., 1988: Some observations of the optical properties of clouds. II: Cirrus. Quart. J. Roy. Meteor. Soc., 114, 145164, https://doi.org/10.1002/qj.49711447908.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fu, Q., K. N. Liou, M. C. Cribb, T. P. Charlock, and A. Grossman, 1997: Multiple scattering parameterization in thermal infrared radiative transfer. J. Atmos. Sci., 54, 27992812, https://doi.org/10.1175/1520-0469(1997)054<2799:MSPITI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fu, Q., P. Yang, and W. B. Sun, 1998: An accurate parameterization of the infrared radiative properties of cirrus clouds for climate models. J. Climate, 11, 22232237, https://doi.org/10.1175/1520-0442(1998)011<2223:AAPOTI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hansen, J. E., 1969: Absorption-line formation in a scattering planetary atmosphere: A test of van de Hulst’s similarity relations. Astrophys. J., 158, 337349, https://doi.org/10.1086/150196.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hansen, J. E., and L. D. Travis, 1974: Light scattering in planetary atmospheres. Space Sci. Rev., 16, 527610, https://doi.org/10.1007/BF00168069.

  • Hansen, J. E., G. Russell, D. Rind, P. Stone, A. Lacis, S. Lebedeff, R. Ruedy, and L. Travis, 1983: Efficient three-dimensional global models for climate studies: Models I and II. Mon. Wea. Rev., 111, 609662, https://doi.org/10.1175/1520-0493(1983)111<0609:ETDGMF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, Y. X., and K. Stamnes, 1993: An accurate parameterization of the radiative properties of water clouds suitable for use in climate models. J. Climate, 6, 728742, https://doi.org/10.1175/1520-0442(1993)006<0728:AAPOTR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Iacono, M. J., E. J. Mlawer, S. A. Clough, and J.-J. Morcrette, 2000: Impact of an improved longwave radiation model, RRTM, on the energy budget and thermodynamic properties of the NCAR community climate model, CCM3. J. Geophys. Res., 105, 14 87314 890, https://doi.org/10.1029/2000JD900091.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Joseph, E., and Q. Min, 2003: Assessment of multiple scattering and horizontal inhomogeneity in IR radiative transfer calculations of observed thin cirrus clouds. J. Geophys. Res., 108, 4380, https://doi.org/10.1029/2002JD002831.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Joseph, J. H., W. J. Wiscombe, and J. A. Weinman, 1976: The delta-Eddington approximation for radiative flux transfer. J. Atmos. Sci., 33, 24522459, https://doi.org/10.1175/1520-0469(1976)033<2452:TDEAFR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kattawar, G. W., and G. N. Plass, 1973: Interior radiances in optically deep absorbing media—I. Exact solutions for one-dimensional model. J. Quant. Spectrosc. Radiat. Transfer, 13, 10651080, https://doi.org/10.1016/0022-4073(73)90080-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kay, J. E., and Coauthors, 2015: The Community Earth System Model (CESM) large ensemble project: A community resource for studying climate change in the presence of internal climate variability. Bull. Amer. Meteor. Soc., 96, 13331349, https://doi.org/10.1175/BAMS-D-13-00255.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Key, J., 1996: Streamer user’s guide. Boston University Tech. Rep. 96-01, 85 pp.

  • King, M. D., 1981: A method for determining the single scattering albedo of clouds through observation of the internal scattered radiation field. J. Atmos. Sci., 38, 20312044, https://doi.org/10.1175/1520-0469(1981)038<2031:AMFDTS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuo, C.-P., P. Yang, X. Huang, D. Feldman, M. Flanner, C. Kuo, and E. J. Mlawer, 2017: Impact of multiple scattering on longwave radiative transfer involving clouds. J. Adv. Model. Earth Syst., 9, 30823098, https://doi.org/10.1002/2017MS001117.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Z.-L., H. Wu, N. Wang, S. Qiu, J. A. Sobrino, Z. Wan, B.-H. Tang, and G. Yan, 2013: Land surface emissivity retrieval from satellite data. Int. J. Remote Sens., 34, 30843127, https://doi.org/10.1080/01431161.2012.716540.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liou, K. N., 1980: An Introduction to Atmospheric Radiation. Vol. 26. Academic Press, 391 pp.

  • Loeb, N. G., and Coauthors, 2018: Impact of ice cloud microphysics on satellite cloud retrievals and broadband flux radiative transfer model calculations. J. Climate, 31, 18511864, https://doi.org/10.1175/JCLI-D-17-0426.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Masuda, K., T. Takashima, and Y. Takayama, 1988: Emissivity of pure and sea waters for the model sea surface in the infrared window regions. Remote Sens. Environ., 24, 313329, https://doi.org/10.1016/0034-4257(88)90032-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McKellar, B. H. J., and M. A. Box, 1981: The scaling group of the radiative transfer equation. J. Atmos. Sci., 38, 10631068, https://doi.org/10.1175/1520-0469(1981)038<1063:TSGOTR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated‐k model for the longwave. J. Geophys. Res., 102, 16 66316 682, https://doi.org/10.1029/97JD00237.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Platnick, S., and Coauthors, 2017: The MODIS cloud optical and microphysical products: Collection 6 updates and examples from Terra and Aqua. IEEE Trans. Geosci. Remote Sens., 55, 502525, https://doi.org/10.1109/TGRS.2016.2610522.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Powers, J. G., and Coauthors, 2017: The Weather Research and Forecasting (WRF) Model: Overview, system efforts, and future directions. Bull. Amer. Meteor. Soc., 98, 17171737, https://doi.org/10.1175/BAMS-D-15-00308.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ritter, B., and J.-F. Geleyn, 1992: A comprehensive radiation scheme for numerical weather prediction models with potential applications in climate simulations. Mon. Wea. Rev., 120, 303325, https://doi.org/10.1175/1520-0493(1992)120<0303:ACRSFN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmidt, G. A., and Coauthors, 2006: Present-day atmospheric simulations using GISS ModelE: Comparison to in situ, satellite, and reanalysis data. J. Climate, 19, 153192, https://doi.org/10.1175/JCLI3612.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sobolev, V. V., 1975: Rasseianie sveta v atmosferakh planet (Light Scattering in Planetary Atmospheres). Pergamon Press, 256 pp.

    • Crossref
    • Export Citation
  • Stephens, G. L., P. M. Gabriel, and P. T. Partain, 2001: Parameterization of atmospheric radiative transfer. Part I: Validity of simple models. J. Atmos. Sci., 58, 33913409, https://doi.org/10.1175/1520-0469(2001)058<3391:POARTP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Turner, D. D., 2005: Arctic mixed-phase cloud properties from AERI lidar observations: Algorithm and results from SHEBA. J. Appl. Meteor., 44, 427444, https://doi.org/10.1175/JAM2208.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Turner, D. D., S. A. Ackerman, B. A. Baum, H. E. Revercomb, and P. Yang, 2003: Cloud phase determination using ground-based AERI observations at SHEBA. J. Appl. Meteor., 42, 701715, https://doi.org/10.1175/1520-0450(2003)042<0701:CPDUGA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Twomey, S., and C. F. Bohren, 1980: Simple approximations for calculations of absorption in clouds. J. Atmos. Sci., 37, 20862095, https://doi.org/10.1175/1520-0469(1980)037<2086:SAFCOA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van de Hulst, H. C., 1974: The spherical albedo of a planet covered with a homogeneous cloud layer. Astron. Astrophys., 35, 209214.

  • van de Hulst, H. C., 1980: Multiple Light Scattering: Tables, Formulas, and Applications. Vol. 2, Academic Press, 436 pp.

  • Wiscombe, W. J., 1977: The delta–M method: Rapid yet accurate radiative flux calculations for strongly asymmetric phase functions. J. Atmos. Sci., 34, 14081422, https://doi.org/10.1175/1520-0469(1977)034<1408:TDMRYA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, P., L. Bi, B. A. Baum, K.-N. Liou, G. W. Kattawar, M. I. Mishchenko, and B. Cole, 2013: Spectrally consistent scattering, absorption, and polarization properties of atmospheric ice crystals at wavelengths from 0.2 to 100 μm. J. Atmos. Sci., 70, 330347, https://doi.org/10.1175/JAS-D-12-039.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 730 162 10
PDF Downloads 566 127 5