Analysis of Cloud-Resolving Model Simulations for Scale Dependence of Convective Momentum Transport

Yi-Chin Liu Pacific Northwest National Laboratory, Richland, Washington, and Air Resources Board, California Environmental Protection Agency, Sacramento, California

Search for other papers by Yi-Chin Liu in
Current site
Google Scholar
PubMed
Close
,
Jiwen Fan Pacific Northwest National Laboratory, Richland, Washington

Search for other papers by Jiwen Fan in
Current site
Google Scholar
PubMed
Close
,
Kuan-Man Xu NASA Langley Research Center, Hampton, Virginia

Search for other papers by Kuan-Man Xu in
Current site
Google Scholar
PubMed
Close
, and
Guang J. Zhang Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California

Search for other papers by Guang J. Zhang in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

We use 3D cloud-resolving model (CRM) simulations of two mesoscale convective systems at midlatitudes and a simple statistical ensemble method to diagnose the scale dependency of convective momentum transport (CMT) and CMT-related properties and evaluate a parameterization scheme for the convection-induced pressure gradient (CIPG) developed by Gregory et al. Gregory et al. relate CIPG to a constant coefficient multiplied by mass flux and vertical mean wind shear. CRM results show that mass fluxes and CMT exhibit strong scale dependency in temporal evolution and vertical structure. The upgradient–downgradient CMT characteristics for updrafts are generally similar between small and large grid spacings, which is consistent with previous understanding, but they can be different for downdrafts across wide-ranging grid spacings. For the small to medium grid spacings (4–64 km), Gregory et al. reproduce some aspects of CIPG scale dependency except for underestimating the variations of CIPG as grid spacing decreases. However, for large grid spacings (128–512 km), Gregory et al. might even less adequately parameterize CIPG because it omits the contribution from either the nonlinear-shear or the buoyancy forcings. Further diagnosis of CRM results suggests that inclusion of nonlinear-shear forcing in Gregory et al. is needed for the large grid spacings. For the small to median grid spacings, a modified Gregory et al. with the three-updraft approach help better capture the variations of CIPG as grid spacing decreases compared to the single updraft approach. Further, the optimal coefficients used in Gregory et al. seem insensitive to grid spacings, but they might be different for updrafts and downdrafts, for different MCS types, and for zonal and meridional components.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JAS-D-18-0019.s1.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Jiwen Fan, jiwen.fan@pnnl.gov

Abstract

We use 3D cloud-resolving model (CRM) simulations of two mesoscale convective systems at midlatitudes and a simple statistical ensemble method to diagnose the scale dependency of convective momentum transport (CMT) and CMT-related properties and evaluate a parameterization scheme for the convection-induced pressure gradient (CIPG) developed by Gregory et al. Gregory et al. relate CIPG to a constant coefficient multiplied by mass flux and vertical mean wind shear. CRM results show that mass fluxes and CMT exhibit strong scale dependency in temporal evolution and vertical structure. The upgradient–downgradient CMT characteristics for updrafts are generally similar between small and large grid spacings, which is consistent with previous understanding, but they can be different for downdrafts across wide-ranging grid spacings. For the small to medium grid spacings (4–64 km), Gregory et al. reproduce some aspects of CIPG scale dependency except for underestimating the variations of CIPG as grid spacing decreases. However, for large grid spacings (128–512 km), Gregory et al. might even less adequately parameterize CIPG because it omits the contribution from either the nonlinear-shear or the buoyancy forcings. Further diagnosis of CRM results suggests that inclusion of nonlinear-shear forcing in Gregory et al. is needed for the large grid spacings. For the small to median grid spacings, a modified Gregory et al. with the three-updraft approach help better capture the variations of CIPG as grid spacing decreases compared to the single updraft approach. Further, the optimal coefficients used in Gregory et al. seem insensitive to grid spacings, but they might be different for updrafts and downdrafts, for different MCS types, and for zonal and meridional components.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JAS-D-18-0019.s1.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Jiwen Fan, jiwen.fan@pnnl.gov

Supplementary Materials

    • Supplemental Materials (PDF 5.71 MB)
Save
  • Arakawa, A., and C.-M. Wu, 2013: A unified representation of deep moist convection in numerical modeling of the atmosphere. Part I. J. Atmos. Sci., 70, 19771992, https://doi.org/10.1175/JAS-D-12-0330.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arakawa, A., J.-H. Jung, and C.-M. Wu, 2011: Toward unification of the multiscale modeling of the atmosphere. Atmos. Chem. Phys., 11, 37313742, https://doi.org/10.5194/acp-11-3731-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Asai, T., 1970: Three-dimensional features of thermal convection in a plane Couette flow. J. Meteor. Soc. Japan, 48, 1829, https://doi.org/10.2151/jmsj1965.48.1_18.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Badlan, R. L., T. P. Lane, M. W. Moncrieff, and C. Jakob, 2017: Insights into convective momentum transport and its parametrization from idealized simulations of organized convection. Quart. J. Roy. Meteor. Soc., 143, 26872702, https://doi.org/10.1002/qj.3118.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cheng, A., and K.-M. Xu, 2014: An explicit representation of vertical momentum transport in a multiscale modeling framework through its 2-D cloud-resolving model component. J. Geophys. Res. Atmos., 119, 23562374, https://doi.org/10.1002/2013JD021078.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deng, L., and X. Wu, 2010: Effects of convective processes on GCM simulations of the Madden–Julian oscillation. J. Climate, 23, 352377, https://doi.org/10.1175/2009JCLI3114.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fan, J., L. R. Leung, Z. Li, H. Morrison, H. Chen, Y. Zhou, Y. Qian, and Y. Wang, 2012: Aerosol impacts on clouds and precipitation in eastern China: Results from bin and bulk microphysics. J. Geophys. Res., 117, D00K36, https://doi.org/10.1029/2011JD016537.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fan, J., and Coauthors, 2015: Improving representation of convective transport for scale-aware parameterization: 1. Convection and cloud properties simulated with spectral bin and bulk microphysics. J. Geophys. Res. Atmos., 120, 34853509, https://doi.org/10.1002/2014JD022142.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gallus, W. A., Jr., and R. H. Johnson, 1992: The momentum budget of an intense midlatitude squall line. J. Atmos. Sci., 49, 422450, https://doi.org/10.1175/1520-0469(1992)049<0422:TMBOAI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., and M. W. Moncrieff, 2001: Large-scale organization of tropical convection in two-dimensional explicit numerical simulations. Quart. J. Roy. Meteor. Soc., 127, 445468, https://doi.org/10.1002/qj.49712757211.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gregory, D., R. Kershaw, and P. M. Inness, 1997: Parameterization of momentum transport by convection. II: Tests in single-column and general circulation models. Quart. J. Roy. Meteor. Soc., 123, 11531183, https://doi.org/10.1002/qj.49712354103.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Han, J., and H.-L. Pan, 2006: Sensitivity of hurricane intensity forecast to convective momentum transport parameterization. Mon. Wea. Rev., 134, 664674, https://doi.org/10.1175/MWR3090.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Helfand, H. M., 1979: The effect of cumulus friction on the simulation of the January Hadley circulation by the GLAS model of the general circulation. J. Atmos. Sci., 36, 18271843, https://doi.org/10.1175/1520-0469(1979)036<1827:TEOCFO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., 1973: A climatological study of vertical transports by cumulus-scale convection. J. Atmos. Sci., 30, 11121123, https://doi.org/10.1175/1520-0469(1973)030<1112:ACSOVT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., S. S. Chen, D. E. Kingsmill, Y. Serra, and S. E. Yuter, 2000: Convection over the Pacific warm pool in relation to the atmospheric Kelvin–Rossby wave. J. Atmos. Sci., 57, 30583089, https://doi.org/10.1175/1520-0469(2000)057<3058:COTPWP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khain, A., A. Pokrovsky, M. Pinsky, A. Seifert, and V. Phillips, 2004: Simulation of effects of atmospheric aerosols on deep turbulent convective clouds using a spectral microphysics mixed-phase cumulus cloud model. Part I: Model description and possible applications. J. Atmos. Sci., 61, 29632982, https://doi.org/10.1175/JAS-3350.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khairoutdinov, M. F., and D. A. Randall, 2001: A cloud resolving model as a cloud parameterization in the NCAR Community Climate Model: Preliminary results. Geophys. Res. Lett., 28, 36173620, https://doi.org/10.1029/2001GL013552.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khouider, B., Y. Han, and J. A. Biello, 2012a: Convective momentum transport in a simple multicloud model for organized convection. J. Atmos. Sci., 69, 281302, https://doi.org/10.1175/JAS-D-11-042.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khouider, B., Y. Han, A. J. Majda, and S. N. Stechmann, 2012b: Multiscale waves in an MJO background and convective momentum transport feedback. J. Atmos. Sci., 69, 915933, https://doi.org/10.1175/JAS-D-11-0152.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lane, T. P., and M. W. Moncrieff, 2010: Characterization of momentum transport associated with organized moist convection and gravity waves. J. Atmos. Sci., 67, 32083225, https://doi.org/10.1175/2010JAS3418.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • LeMone, M. A., 1983: Momentum transport by a line of cumulonimbus. J. Atmos. Sci., 40, 18151834, https://doi.org/10.1175/1520-0469(1983)040<1815:MTBALO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • LeMone, M. A., and D. P. Jorgensen, 1991: Precipitation and kinematic structure of an oceanic mesoscale convective system. Part I: Momentum transport and generation. Mon. Wea. Rev., 119, 26382653, https://doi.org/10.1175/1520-0493(1991)119<2638:PAKSOA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • LeMone, M. A., and M. W. Moncrieff, 1994: Momentum and mass transport by convective bands: Comparisons of highly idealized dynamical models to observations. J. Atmos. Sci., 51, 281305, https://doi.org/10.1175/1520-0469(1994)051<0281:MAMTBC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • LeMone, M. A., G. M. Barnes, and E. J. Zipser, 1984: Momentum flux by lines of cumulonimbus over the tropical ocean. J. Atmos. Sci., 41, 19141932, https://doi.org/10.1175/1520-0469(1984)041<1914:MFBLOC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Y.-C., J. Fan, G. J. Zhang, K.-M. Xu, and S. J. Ghan, 2015: Improving representation of convective transport for scale-aware parameterization: 2. Analysis of cloud-resolving model simulations. J. Geophys. Res. Atmos., 120, 35103532, https://doi.org/10.1002/2014JD022145.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Majda, A. J., and S. N. Stechmann, 2008: Stochastic models for convective momentum transport. Proc. Natl. Acad. Sci. USA, 105, 17 61417 619, https://doi.org/10.1073/pnas.0806838105.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Majda, A. J., and S. N. Stechmann, 2009: A simple dynamical model with features of convective momentum transport. J. Atmos. Sci., 66, 373392, https://doi.org/10.1175/2008JAS2805.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Majda, A. J., and S. N. Stechmann, 2016: Models for multiscale interactions. Part II: Madden–Julian oscillation, moisture, and convective momentum transport. Multiscale Convection-Coupled Systems in the Tropics: A Tribute to Dr. Michio Yanai, Meteor. Monogr., No. 56, Amer. Meteor. Soc., 10.1–10.5, https://doi.org/10.1175/AMSMONOGRAPHS-D-15-0005.1.

    • Crossref
    • Export Citation
  • Moncrieff, M. W., 1981: A theory of organized steady convection and its transport properties. Quart. J. Roy. Meteor. Soc., 107, 2950, https://doi.org/10.1002/qj.49710745103.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moncrieff, M. W., 1992: Organized convective systems: Archetypal dynamical models, mass and momentum flux theory, and parametrization. Quart. J. Roy. Meteor. Soc., 118, 819850, https://doi.org/10.1002/qj.49711850703.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moncrieff, M. W., and J. S. A. Green, 1972: The propagation and transfer properties of steady convective overturning in shear. Quart. J. Roy. Meteor. Soc., 98, 336352, https://doi.org/10.1002/qj.49709841607.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moncrieff, M. W., and C. Liu, 2006: Representing convective organization in prediction model by a hybrid strategy. J. Atmos. Sci., 63, 34043420, https://doi.org/10.1175/JAS3812.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neale, R. B., and Coauthors, 2010: Description of the NCAR Community Atmosphere Model (CAM5). NCAR Tech. Note NCAR/TN-486+STR, 268 pp., www.cesm.ucar.edu/models/cesm1.1/cam/docs/description/cam5_desc.pdf.

  • Ooyama, K., 1971: A theory on parameterization of cumulus convection. J. Meteor. Soc. Japan, 49, 744756, https://doi.org/10.2151/jmsj1965.49A.0_744.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Petersen, W. A., and M. Jensen, 2012: The NASA-GPM and DOE-ARM Midlatitude Continental Convective Clouds Experiment (MC3E). The Earth Observer, Vol. 24, No. 1, NASA GSFC Science Communications Support Office, Greenbelt, Maryland, 12–18, https://eospso.nasa.gov/sites/default/files/eo_pdfs/Jan_Feb_2012_col_508.pdf.

  • Richter, J. H., and P. J. Rasch, 2008: Effects of convective momentum transport on the atmospheric circulation in the Community Atmosphere Model, version 3. J. Climate, 21, 14871499, https://doi.org/10.1175/2007JCLI1789.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Romps, D. M., 2012: On the equivalence of two schemes for convective momentum transport. J. Atmos. Sci., 69, 34913500, https://doi.org/10.1175/JAS-D-12-068.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rotunno, R., and J. B. Klemp, 1982: The influence of the shear-induced pressure gradient on thunderstorm motion. Mon. Wea. Rev., 110, 136151, https://doi.org/10.1175/1520-0493(1982)110<0136:TIOTSI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schneider, E. K., and R. S. Lindzen, 1976: A discussion of the parameterization of momentum exchange by cumulus convection. J. Geophys. Res., 81, 31583161, https://doi.org/10.1029/JC081i018p03158.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shapiro, L. J., and D. E. Stevens, 1980: Parameterization of convective effects on the momentum and vorticity budgets of synoptic-scale Atlantic tropical waves. Mon. Wea. Rev., 108, 18161826, https://doi.org/10.1175/1520-0493(1980)108<1816:POCEOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shaw, T. A., and T. P. Lane, 2013: Toward an understanding of vertical momentum transports in cloud-system-resolving model simulations of multiscale tropical convection. J. Atmos. Sci., 70, 32313247, https://doi.org/10.1175/JAS-D-13-068.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Song, X., X. Wu, G. J. Zhang, and R. W. Arritt, 2008: Dynamical effects of convective momentum transports on global climate simulations. J. Climate, 21, 180194, https://doi.org/10.1175/2007JCLI1848.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sui, C.-H., and M. Yanai, 1986: Cumulus ensemble effects on the large-scale vorticity and momentum fields of GATE. Part I: Observational evidence. J. Atmos. Sci., 43, 16181642, https://doi.org/10.1175/1520-0469(1986)043<1618:CEEOTL>2.0.CO;2; Corrigendum, 46, 1630, https://doi.org/10.1175/1520-0469(1989)046<1630:C>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tollerud, E. I., and S. K. Esbensen, 1983: An observational study of the upper-tropospheric vorticity fields in GATE cloud clusters. Mon. Wea. Rev., 111, 21612175, https://doi.org/10.1175/1520-0493(1983)111<2161:AOSOTU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tulich, S. N., 2015: A strategy for representing the effects of convective momentum transport in multiscale models: Evaluation using a new superparameterized version of the Weather Research and Forecast Model (SP-WRF). J. Adv. Model. Earth Syst., 7, 938962, https://doi.org/10.1002/2014MS000417.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tung, W.-W., and M. Yanai, 2002a: Convective momentum transport observed during the TOGA COARE IOP. Part I: General features. J. Atmos. Sci., 59, 18571871, https://doi.org/10.1175/1520-0469(2002)059<1857:CMTODT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tung, W.-W., and M. Yanai, 2002b: Convective momentum transport observed during the TOGA COARE IOP. Part II: Case studies. J. Atmos. Sci., 59, 25352549, https://doi.org/10.1175/1520-0469(2002)059<2535:CMTODT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Y., J. Fan, R. Zhang, L. R. Leung, and C. Franklin, 2013: Improving bulk microphysics parameterizations in simulations of aerosol effects. J. Geophys. Res. Atmos., 118, 53615379, https://doi.org/10.1002/jgrd.50432.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, C.-M., and A. Arakawa, 2014: A unified representation of deep moist convection in numerical modeling of the atmosphere. Part II. J. Atmos. Sci., 71, 20892103, https://doi.org/10.1175/JAS-D-13-0382.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, X., and M. Yanai, 1994: Effects of vertical wind shear on the cumulus transport of momentum: Observations and parameterization. J. Atmos. Sci., 51, 16401660, https://doi.org/10.1175/1520-0469(1994)051<1640:EOVWSO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, X., X. Liang, and G. J. Zhang, 2003: Seasonal migration of ITCZ precipitation across the equator: Why can’t GCMs simulate it? Geophys. Res. Lett., 30, 1824, https://doi.org/10.1029/2003GL017198.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, G. J., and H. R. Cho, 1991a: Parameterization of the vertical transport of momentum by cumulus clouds. Part I: Theory. J. Atmos. Sci., 48, 14831492, https://doi.org/10.1175/1520-0469(1991)048<1483:POTVTO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, G. J., and H. R. Cho, 1991b: Parameterization of the vertical transport of momentum by cumulus clouds. Part II: Application. J. Atmos. Sci., 48, 24482457, https://doi.org/10.1175/1520-0469(1991)048<2448:POTVTO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, G. J., and N. A. McFarlane, 1995: Role of convective-scale momentum transport in climate simulation. J. Geophys. Res., 100, 14171426, https://doi.org/10.1029/94JD02519.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, G. J., and X. Wu, 2003: Convective momentum transport and perturbation pressure field from a cloud-resolving model simulation. J. Atmos. Sci., 60, 11201139, https://doi.org/10.1175/1520-0469(2003)060<1120:CMTAPP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 369 119 6
PDF Downloads 319 60 1