Reply to “Comments on ‘Revisiting the Balanced and Unbalanced Aspects of Tropical Cyclone Intensification’”

Junyao Heng Pacific Typhoon Research Center, and Key Laboratory of Meteorological Disaster, Ministry of Education, Nanjing University of Information Science and Technology, Nanjing, China

Search for other papers by Junyao Heng in
Current site
Google Scholar
PubMed
Close
,
Yuqing Wang Department of Atmospheric Sciences, and International Pacific Research Center, School of Ocean and Earth Science and Technology, University of Hawai‘i at Mānoa, Honolulu, Hawaii, and Pacific Typhoon Research Center, and Key Laboratory of Meteorological Disaster, Ministry of Education, Nanjing University of Information Science and Technology, Nanjing, China

Search for other papers by Yuqing Wang in
Current site
Google Scholar
PubMed
Close
, and
Weican Zhou Pacific Typhoon Research Center, and Key Laboratory of Meteorological Disaster, Ministry of Education, Nanjing University of Information Science and Technology, Nanjing, China

Search for other papers by Weican Zhou in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

In their comment, Montgomery and Smith critique the recent study of Heng et al. that revisited the balanced and unbalanced aspects of tropical cyclone (TC) intensification based on diagnostics of a full-physics model simulation using the Sawyer–Eliassen equation. Heng et al. showed that the balanced dynamics reproduced to a large extent the secondary circulation in the full-physics model simulation and concluded that balanced dynamics can well explain TC intensification in their full-physics model simulation. Montgomery and Smith suspect the balanced solution in Heng et al. because the basic-state vortex is not exactly in thermal wind balance in the boundary layer and possibly a too-large diffusivity in the numerical model was used. In this reply, we first indicate that the boundary layer spinup mechanism proposed by Smith et al. is a fast response of the TC boundary layer to surface friction and should not be a major mechanism of TC intensification. We then evaluate the possible effect of imbalance in the basic state in the boundary layer on the balanced solution. The results show that although the removal of the imbalance in the boundary layer leads to about a one-third reduction in the maximum inflow near the surface in the inner-core region, the overall effect on the tangential wind budget is marginal because of other compensations. We also show that both the horizontal and vertical diffusivities in the model used in Heng et al. are reasonable based on previous observational studies. Therefore, we conclude that all results in Heng et al. are valid. Some related issues are also discussed.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Professor Yuqing Wang, yuqing@hawaii.edu

The original article that was the subject of this comment/reply can be found at http://journals.ametsoc.org/doi/abs/10.1175/JAS-D-17-0046.1.

Abstract

In their comment, Montgomery and Smith critique the recent study of Heng et al. that revisited the balanced and unbalanced aspects of tropical cyclone (TC) intensification based on diagnostics of a full-physics model simulation using the Sawyer–Eliassen equation. Heng et al. showed that the balanced dynamics reproduced to a large extent the secondary circulation in the full-physics model simulation and concluded that balanced dynamics can well explain TC intensification in their full-physics model simulation. Montgomery and Smith suspect the balanced solution in Heng et al. because the basic-state vortex is not exactly in thermal wind balance in the boundary layer and possibly a too-large diffusivity in the numerical model was used. In this reply, we first indicate that the boundary layer spinup mechanism proposed by Smith et al. is a fast response of the TC boundary layer to surface friction and should not be a major mechanism of TC intensification. We then evaluate the possible effect of imbalance in the basic state in the boundary layer on the balanced solution. The results show that although the removal of the imbalance in the boundary layer leads to about a one-third reduction in the maximum inflow near the surface in the inner-core region, the overall effect on the tangential wind budget is marginal because of other compensations. We also show that both the horizontal and vertical diffusivities in the model used in Heng et al. are reasonable based on previous observational studies. Therefore, we conclude that all results in Heng et al. are valid. Some related issues are also discussed.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Professor Yuqing Wang, yuqing@hawaii.edu

The original article that was the subject of this comment/reply can be found at http://journals.ametsoc.org/doi/abs/10.1175/JAS-D-17-0046.1.

Save
  • Bryan, G. H., 2012: Effects of surface exchange coefficients and turbulence length scales on the intensity and structure of numerically simulated hurricanes. Mon. Wea. Rev., 140, 11251143, https://doi.org/10.1175/MWR-D-11-00231.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bui, H. H., R. K. Smith, M. T. Montgomery, and J. Peng, 2009: Balanced and unbalanced aspects of tropical cyclone intensification. Quart. J. Roy. Meteor. Soc., 135, 17151731, https://doi.org/10.1002/qj.502.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Craig, G. C., and S. L. Gray, 1996: CISK or WISHE as the mechanism for tropical cyclone intensification. J. Atmos. Sci., 53, 35283540, https://doi.org/10.1175/1520-0469(1996)053<3528:COWATM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eliassen, A., and M. Lystad, 1977: The Ekman layer of a circular vortex: A numerical and theoretical study. Geophys. Norv., 31, 116.

  • Fudeyasu, H., and Y. Wang, 2011: Balanced contribution to the intensification of a tropical cyclone simulated in TCM4: Outer-core spinup process. J. Atmos. Sci., 68, 430449, https://doi.org/10.1175/2010JAS3523.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heng, J., and Y. Wang, 2016a: Nonlinear response of a tropical cyclone vortex to prescribed eyewall heating with and without surface friction in TCM4: Implications for tropical cyclone intensification. J. Atmos. Sci., 73, 13151333, https://doi.org/10.1175/JAS-D-15-0164.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heng, J., and Y. Wang, 2016b: Reply to “Comments on ‘Nonlinear response of a tropical cyclone vortex to prescribed eyewall heating with and without surface friction in TCM4: Implications for tropical cyclone intensification.’” J. Atmos. Sci., 73, 51055109, https://doi.org/10.1175/JAS-D-16-0262.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heng, J., Y. Wang, and W.-C. Zhou, 2017: Revisiting the balanced an unbalanced aspects of tropical cyclone intensification. J. Atmos. Sci., 74, 25752591, https://doi.org/10.1175/JAS-D-17-0046.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kepert, J. D., 2001: The dynamics of boundary layer jets within the tropical cyclone core. Part I: Linear theory. J. Atmos. Sci., 58, 24692484, https://doi.org/10.1175/1520-0469(2001)058<2469:TDOBLJ>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kepert, J. D., 2017: Time and space scales in the tropical cyclone boundary layer, and the location of the eyewall updraft. J. Atmos. Sci., 74, 33053323, https://doi.org/10.1175/JAS-D-17-0077.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kepert, J. D., and Y. Wang, 2001: The dynamics of boundary layer jets within the tropical cyclone core. Part II: Nonlinear enhancement. J. Atmos. Sci., 58, 24852501, https://doi.org/10.1175/1520-0469(2001)058<2485:TDOBLJ>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kepert, J. D., and D. S. Nolan, 2014: Reply to “Comments on ‘How does the boundary layer contribute to eyewall replacement cycles in axisymmetric tropical cyclones?’” J. Atmos. Sci., 71, 46924704, https://doi.org/10.1175/JAS-D-14-0014.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Q.-Q., and Y. Wang, 2012: Formation and quasi-periodic behavior of outer spiral rainbands in a numerically simulated tropical cyclone. J. Atmos. Sci., 69, 9971020, https://doi.org/10.1175/2011JAS3690.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, T.-H., and Y. Wang, 2018: The role of boundary layer dynamics in tropical cyclone intensification. Part II: Results from the full-physics model TCM4. 33rd Conf. on Hurricanes and Tropical Meteorology, Ponte Vedra, FL, Amer. Meteor. Soc., 11C.5, https://ams.confex.com/ams/33HURRICANE/webprogram/Paper339933.html.

  • Montgomery, M. T., and R. K. Smith, 2018: Comments on “Revisiting the balanced and unbalanced aspects of tropical cyclone intensification.” J. Atmos. Sci., 75, 24912496, https://doi.org/10.1175/JAS-D-17-0323.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., R. K. Smith, and S. V. Nguyen, 2010: Sensitivity of tropical-cyclone models to the surface drag coefficient. Quart. J. Roy. Meteor. Soc., 136, 19451953, https://doi.org/10.1002/qj.702.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ooyama, K. V., 1969: Numerical simulation of the life cycle of tropical cyclones. J. Atmos. Sci., 26, 340, https://doi.org/10.1175/1520-0469(1969)026<0003:NSOTLC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peng, K., R. Rotunno, and G. H. Bryan, 2018: Evaluation of a time-dependent model for the intensification of tropical cyclones. J. Atmos. Sci., https://doi.org/10.1175/JAS-D-17-0382.1, in press.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, R. K., M. T. Montgomery, and N. V. Sang, 2009: Tropical cyclone spin-up revisited. Quart. J. Roy. Meteor. Soc., 135, 13211335, https://doi.org/10.1002/qj.428.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Y., 2001: An explicit simulation of tropical cyclones with a triply nested movable mesh primitive equation model: TCM3. Part I: Model description and control experiment. Mon. Wea. Rev., 129, 13701394, https://doi.org/10.1175/1520-0493(2001)129<1370:AESOTC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Y., 2007: A multiply nested, movable mesh, fully compressible, nonhydrostatic tropical cyclone model—TCM4: Model description and development of asymmetries without explicit asymmetric forcing. Meteor. Atmos. Phys., 97, 93116, https://doi.org/10.1007/s00703-006-0246-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Y., 2009: How do outer spiral rainbands affect tropical cyclone structure and intensity? J. Atmos. Sci., 66, 12501273, https://doi.org/10.1175/2008JAS2737.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Y., and J. Xu, 2010: Energy production, frictional dissipation, and maximum intensity of a numerically simulated tropical cyclone. J. Atmos. Sci., 67, 97116, https://doi.org/10.1175/2009JAS3143.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Y., and J. Heng, 2016: Contribution of eye excess energy to the intensification rate of tropical cyclones: A numerical study. J. Adv. Model. Earth Syst., 8, 19531968, https://doi.org/10.1002/2016MS000709.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Y., and T.-H. Li, 2018: The role of boundary layer dynamics in tropical cyclone intensification. Part I: Results from a simplified framework. 33rd Conf. on Hurricanes and Tropical Meteorology, Ponte Vedra, FL, Amer. Meteor. Soc., 11C.4, https://ams.confex.com/ams/33HURRICANE/webprogram/Paper339958.html.

  • Williams, G. J., Jr., 2015: The effects of vortex structure and vortex translation on the tropical cyclone boundary layer wind field. J. Adv. Model. Earth Syst., 7, 188214, https://doi.org/10.1002/2013MS000299.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, J., and Y. Wang, 2010: Sensitivity of the simulated tropical cyclone inner-core size to the initial vortex size. Mon. Wea. Rev., 138, 41354157, https://doi.org/10.1175/2010MWR3335.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, J. A., and W. M. Drennan, 2012: An observational study of vertical eddy diffusivity in the hurricane boundary layer. J. Atmos. Sci., 69, 32233236, https://doi.org/10.1175/JAS-D-11-0348.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, J. A., and M. T. Montgomery, 2012: Observational estimates of the horizontal diffusivity and mixing length in the low-level region of intense hurricanes. J. Atmos. Sci., 69, 13061316, https://doi.org/10.1175/JAS-D-11-0180.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 162 63 9
PDF Downloads 104 30 2