• Amoroso, L., 1925: Ricerche intorno alla curva dei redditi. Ann. Mat. Pura Appl., 2, 123159, https://doi.org/10.1007/BF02409935.

  • Antoniazzi, A., D. Fanelli, J. Barré, P.-H. Chavanis, T. Dauxois, and S. Ruffo, 2007: A maximum entropy principle explains quasi-stationary states in systems with long-range interactions: The example of the Hamiltonian Mean Field model. Phys. Rev. E, 75, 011112, https://doi.org/10.1103/PhysRevE.75.011112.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Banavar, J. R., A. Maritan, and I. Volkov, 2010: Applications of the principle of maximum entropy: From physics to ecology. J. Phys. Condens. Matter, 22, 063101, https://doi.org/10.1088/0953-8984/22/6/063101.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berger, A. L., V. J. D. Pietra, and S. A. D. Pietra, 1996: A maximum entropy approach to natural language processing. Comput. Lang., 22 (1), 3971.

    • Search Google Scholar
    • Export Citation
  • Borovikov, A. M., I. I. Gaivoronskii, E. G. Zak, V. V. Kostarev, I. P. Mazin, V. E. Minervin, A. K. Khrgian, and S. M. Shmeter, 1963: Fizika Oblakov (Cloud Physics). Israel Program for Scientific Translations, 392 pp.

  • Buchen, P. W., and M. Kelly, 1996: The maximum entropy distribution of an asset inferred from option prices. J. Financ. Quant. Anal., 31, 143159, https://doi.org/10.2307/2331391.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cozzolino, J. M., and M. J. Zahner, 1973: The maximum-entropy distribution of the future market price of a stock. Oper. Res., 21, 12001211, https://doi.org/10.1287/opre.21.6.1200.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Craig, G. C., and B. G. Cohen, 2006: Fluctuations in an equilibrium convective ensemble. Part I: Theoretical formulation. J. Atmos. Sci., 63, 19962004, https://doi.org/10.1175/JAS3709.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Déchelette, A., E. Babinsky, and P. Sojka, 2011: Drop size distributions. Handbook of Atomization and Sprays, N. Ashgriz, Ed., Springer, 479–495, https://doi.org/10.1007/978-1-4419-7264-4_23.

    • Crossref
    • Export Citation
  • Dougherty, J. P., 1994: Foundations of non-equilibrium statistical mechanics. Phil. Trans. Roy. Soc., 346A, 259305, https://doi.org/10.1098/rsta.1994.0022.

    • Search Google Scholar
    • Export Citation
  • Drake, R., 1972: A general mathematics survey of the coagulation equation. Topics in Current Aerosol Research, G. M. Hidy and J. R. Brock, Eds., Pergamon Press, 201–376.

  • Dumouchel, C., 2006: A new formulation of the maximum entropy formalism to model liquid spray drop-size distribution. Part. Part. Syst. Charact., 23, 468479, https://doi.org/10.1002/ppsc.200500989.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feingold, G., and Z. Levin, 1986: The lognormal fit to raindrop spectra from frontal convective clouds in Israel. J. Climate Appl. Meteor., 25, 13461363, https://doi.org/10.1175/1520-0450(1986)025<1346:TLFTRS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Griffith, L., 1943: A theory of the size distribution of particles in a comminuted system. Can. J. Res., 21, 5764, https://doi.org/10.1139/cjr43a-005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, Z., and R. Srivastava, 1995: Evolution of raindrop size distribution by coalescence, breakup, and evaporation: Theory and observations. J. Atmos. Sci., 52, 17611783, https://doi.org/10.1175/1520-0469(1995)052<1761:EORSDB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jaynes, E. T., 1957a: Information theory and statistical mechanics. Phys. Rev., 106, 620, https://doi.org/10.1103/PhysRev.106.620.

  • Jaynes, E. T., 1957b: Information theory and statistical mechanics. II. Phys. Rev., 108, 171, https://doi.org/10.1103/PhysRev.108.171.

  • Jaynes, E. T., 1963: Information theory and statistical mechanics (notes by the lecturer). Statistical Physics, K. W. Ford, Ed., Brandeis University Summer Institute in Theoretical Physics, Vol. 3, W. A. Benjamin, 181–218.

  • Jaynes, E. T., 1968: Prior probabilities. IEEE Trans. Syst. Sci. Cyb., 4, 227241, https://doi.org/10.1109/TSSC.1968.300117.

  • Jaynes, E. T., 1973: The well-posed problem. Found. Phys., 3, 477492, https://doi.org/10.1007/BF00709116.

  • Jensen, M. P., and Coauthors, 2016: The Midlatitude Continental Convective Clouds Experiment (MC3E). Bull. Amer. Meteor. Soc., 97, 16671686, https://doi.org/10.1175/BAMS-D-14-00228.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kapur, J. N., 1989: Maximum-Entropy Models in Science and Engineering. John Wiley & Sons, 635 pp.

  • Lecompte, M., and C. Dumouchel, 2008: On the capability of the generalized gamma function to represent spray drop-size distribution. Part. Part. Syst. Charact., 25, 154167, https://doi.org/10.1002/ppsc.200701098.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, G. W., I. Zawadzki, W. Szyrmer, D. Sempere-Torres, and R. Uijlenhoet, 2004: A general approach to double-moment normalization of drop size distributions. J. Appl. Meteor., 43, 264281, https://doi.org/10.1175/1520-0450(2004)043<0264:AGATDN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, X., and R. S. Tankin, 1987: Droplet size distribution: A derivation of a Nukiyama-Tanasawa type distribution function. Combust. Sci. Technol., 56, 6576, https://doi.org/10.1080/00102208708947081.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, X., L. Chin, R. S. Tankin, T. Jackson, J. Stutrud, and G. Switzer, 1991: Comparison between experiments and predictions based on maximum entropy for sprays from a pressure atomizer. Combust. Flame, 86, 7389, https://doi.org/10.1016/0010-2180(91)90057-I.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lienhard, J. H., 1964: A statistical mechanical prediction of the dimensionless unit hydrograph. J. Geophys. Res., 69, 52315238, https://doi.org/10.1029/JZ069i024p05231.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • List, R., and G. M. McFarquhar, 1990: The role of breakup and coalescence in the three-peak equilibrium distribution of raindrops. J. Atmos. Sci., 47, 22742292, https://doi.org/10.1175/1520-0469(1990)047<2274:TROBAC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Y., Y. Laiguang, Y. Weinong, and L. Feng, 1995: On the size distribution of cloud droplets. Atmos. Res., 35, 201216, https://doi.org/10.1016/0169-8095(94)00019-A.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Majda, A., and X. Wang, 2006: Non-Linear Dynamics and Statistical Theories for Basic Geophysical Flows. Cambridge University Press, 551 pp.

    • Crossref
    • Export Citation
  • Marshall, J. S., and W. M. K. Palmer, 1948: The distribution of raindrops with size. J. Meteor., 5, 165166, https://doi.org/10.1175/1520-0469(1948)005<0165:TDORWS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maur, A. A., 2001: Statistical tools for drop size distributions: Moments and generalized gamma. J. Atmos. Sci., 58, 407418, https://doi.org/10.1175/1520-0469(2001)058<0407:STFDSD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McFarquhar, G. M., 2004: A new representation of collision-induced breakup of raindrops and its implications for the shapes of raindrop size distributions. J. Atmos. Sci., 61, 777794, https://doi.org/10.1175/1520-0469(2004)061<0777:ANROCB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McFarquhar, G. M., T.-L. Hsieh, M. Freer, J. Mascio, and B. F. Jewett, 2015: The characterization of ice hydrometeor gamma size distributions as volumes in N0λμ phase space: Implications for microphysical process modeling. J. Atmos. Sci., 72, 892909, https://doi.org/10.1175/JAS-D-14-0011.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morrison, H., and J. A. Milbrandt, 2015: Parameterization of cloud microphysics based on the prediction of bulk ice particle properties. Part I: Scheme description and idealized tests. J. Atmos. Sci., 72, 287311, https://doi.org/10.1175/JAS-D-14-0065.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morrison, H., J. Curry, and V. Khvorostyanov, 2005: A new double-moment microphysics parameterization for application in cloud and climate models. Part I: Description. J. Atmos. Sci., 62, 16651677, https://doi.org/10.1175/JAS3446.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nukiyama, S., and Y. Tanasawa, 1939: An experiment on the atomization of liquid: 3rd report, on the distribution of the size of drops. Trans. Japan Soc. Mech. Eng., 5, 131135, https://doi.org/10.1299/kikai1938.5.131.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pathria, R., and P. Beale, 2011: Statistical Mechanics. 3rd ed. Academic Press, 744 pp.

  • Petty, G. W., and W. Huang, 2011: The modified gamma size distribution applied to inhomogeneous and nonspherical particles: Key relationships and conversions. J. Atmos. Sci., 68, 14601473, https://doi.org/10.1175/2011JAS3645.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Phillips, S. J., M. Dudík, and R. E. Schapire, 2004: A maximum entropy approach to species distribution modeling. Proc. 21st Int. Conf. on Machine Learning, Banff, Alberta, Canada, ACM, 655–662.

    • Crossref
    • Export Citation
  • Phillips, S. J., R. P. Anderson, and R. E. Schapire, 2006: Maximum entropy modeling of species geographic distributions. Ecol. Modell., 190, 231259, https://doi.org/10.1016/j.ecolmodel.2005.03.026.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rose, K., E. Gurewitz, and G. C. Fox, 1990: Statistical mechanics and phase transitions in clustering. Phys. Rev. Lett., 65, 945, https://doi.org/10.1103/PhysRevLett.65.945.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rosenfeld, R., 1996: A maximum entropy approach to adaptive statistical language modelling. Comput. Speech Lang., 10, 187228, https://doi.org/10.1006/csla.1996.0011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seifert, A., and K. Beheng, 2006: A two-moment cloud microphysics parameterization for mixed-phase clouds. Part 1: Model description. Meteor. Atmos. Phys., 92, 4566, https://doi.org/10.1007/s00703-005-0112-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sellens, R., and T. Brzustowski, 1985: A prediction of the drop size distribution in a spray from first principles. Atomisation Spray Technol., 1, 89102.

    • Search Google Scholar
    • Export Citation
  • Shannon, C. E., 1948: A mathematical theory of communication. Bell Syst. Tech. J., 27, 379423, 623–656, https://doi.org/10.1002/j.1538-7305.1948.tb01338.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skilling, J., and R. Bryan, 1984: Maximum entropy image reconstruction: General algorithm. Mon. Not. Roy. Astron. Soc., 211, 111124, https://doi.org/10.1093/mnras/211.1.111.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Srivastava, R., 1971: Size distribution of raindrops generated by their breakup and coalescence. J. Atmos. Sci., 28, 410415, https://doi.org/10.1175/1520-0469(1971)028<0410:SDORGB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Srivastava, R., 1982: A simple model of particle coalescence and breakup. J. Atmos. Sci., 39, 13171322, https://doi.org/10.1175/1520-0469(1982)039<1317:ASMOPC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stacy, E. W., 1962: A generalization of the gamma distribution. Ann. Math. Stat., 33, 11871192, https://doi.org/10.1214/aoms/1177704481.

  • Testud, J., S. Oury, R. A. Black, P. Amayenc, and X. Dou, 2001: The concept of “normalized” distribution to describe raindrop spectra: A tool for cloud physics and cloud remote sensing. J. Appl. Meteor., 40, 11181140, https://doi.org/10.1175/1520-0450(2001)040<1118:TCONDT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, G., R. M. Rasmussen, and K. Manning, 2004: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part I: Description and sensitivity analysis. Mon. Wea. Rev., 132, 519542, https://doi.org/10.1175/1520-0493(2004)132<0519:EFOWPU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tian, L., G. M. Heymsfield, L. Li, A. J. Heymsfield, A. Bansemer, C. H. Twohy, and R. C. Srivastava, 2010: A study of cirrus ice particle size distribution using TC4 observations. J. Atmos. Sci., 67, 195216, https://doi.org/10.1175/2009JAS3114.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ulbrich, C. W., 1983: Natural variations in the analytical form of the raindrop size distribution. J. Climate Appl. Meteor., 22, 17641775, https://doi.org/10.1175/1520-0450(1983)022<1764:NVITAF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Verkley, W., 2011: A maximum entropy approach to the problem of parametrization. Quart. J. Roy. Meteor. Soc., 137, 18721886, https://doi.org/10.1002/qj.860.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Verkley, W., and P. Lynch, 2009: Energy and enstrophy spectra of geostrophic turbulent flows derived from a maximum entropy principle. J. Atmos. Sci., 66, 22162236, https://doi.org/10.1175/2009JAS2889.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Verkley, W., P. Kalverla, and C. Severijns, 2016: A maximum entropy approach to the parametrization of subgrid processes in two-dimensional flow. Quart. J. Roy. Meteor. Soc., 142, 22732283, https://doi.org/10.1002/qj.2817.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wernecke, S. J., and L. R. D’Addario, 1977: Maximum entropy image reconstruction. IEEE Trans. Comput., 26, 351364, https://doi.org/10.1109/TC.1977.1674845.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, W., and G. M. McFarquhar, 2016: On the impacts of different definitions of maximum dimension for nonspherical particles recorded by 2D imaging probes. J. Atmos. Oceanic Technol., 33, 10571072, https://doi.org/10.1175/JTECH-D-15-0177.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yano, J.-I., A. J. Heymsfield, and V. T. Phillips, 2016: Size distributions of hydrometeors: Analysis with the maximum entropy principle. J. Atmos. Sci., 73, 95108, https://doi.org/10.1175/JAS-D-15-0097.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, X., and G. Zheng, 1994: A simple droplet spectrum derived from entropy theory. Atmos. Res., 32, 189193, https://doi.org/10.1016/0169-8095(94)90059-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 19 19 19
PDF Downloads 16 16 16

Statistical Theory on the Functional Form of Cloud Particle Size Distributions

View More View Less
  • 1 Department of Atmospheric Sciences, University of Illinois at Urbana–Champaign, Urbana, Illinois, and National Center for Atmospheric Research, Boulder, Colorado
  • | 2 Cooperative Institute for Mesoscale Meteorological Studies, and School of Meteorology, University of Oklahoma, Norman, Oklahoma
Restricted access

Abstract

Several functional forms of cloud particle size distributions (PSDs) have been used in numerical modeling and remote sensing retrieval studies of clouds and precipitation, including exponential, gamma, lognormal, and Weibull distributions. However, there is no satisfying theoretical explanation as to why certain distribution forms preferentially occur instead of others. Intuitively, the analytical form of a PSD can be derived by directly solving the general dynamic equation, but no analytical solutions have been found yet. Instead of a process-level approach, the use of the principle of maximum entropy (MaxEnt) for determining the theoretical form of PSDs from the perspective of system is examined here. MaxEnt theory states that the probability density function with the largest information entropy among a group satisfying the given properties of the variable should be chosen. Here, the issue of variability under coordinate transformations that arises using the Gibbs–Shannon definition of entropy is identified, and the use of the concept of relative entropy to avoid these problems is discussed. Focusing on cloud physics, the four-parameter generalized gamma distribution is proposed as the analytical form of a PSD using the principle of maximum (relative) entropy with assumptions on power-law relations among state variables, scale invariance, and a further constraint on the expectation of one state variable (e.g., bulk water mass). The four-parameter generalized gamma distribution is very flexible to accommodate various type of constraints that could be assumed for cloud PSDs.

Current affiliation: Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, Norman, Oklahoma.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Wei Wu, weiwu@ou.edu

Abstract

Several functional forms of cloud particle size distributions (PSDs) have been used in numerical modeling and remote sensing retrieval studies of clouds and precipitation, including exponential, gamma, lognormal, and Weibull distributions. However, there is no satisfying theoretical explanation as to why certain distribution forms preferentially occur instead of others. Intuitively, the analytical form of a PSD can be derived by directly solving the general dynamic equation, but no analytical solutions have been found yet. Instead of a process-level approach, the use of the principle of maximum entropy (MaxEnt) for determining the theoretical form of PSDs from the perspective of system is examined here. MaxEnt theory states that the probability density function with the largest information entropy among a group satisfying the given properties of the variable should be chosen. Here, the issue of variability under coordinate transformations that arises using the Gibbs–Shannon definition of entropy is identified, and the use of the concept of relative entropy to avoid these problems is discussed. Focusing on cloud physics, the four-parameter generalized gamma distribution is proposed as the analytical form of a PSD using the principle of maximum (relative) entropy with assumptions on power-law relations among state variables, scale invariance, and a further constraint on the expectation of one state variable (e.g., bulk water mass). The four-parameter generalized gamma distribution is very flexible to accommodate various type of constraints that could be assumed for cloud PSDs.

Current affiliation: Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, Norman, Oklahoma.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Wei Wu, weiwu@ou.edu
Save