• Alaka, M. A., 1961: The occurrence of anomalous winds and their significance. Mon. Wea. Rev., 89, 482494, https://doi.org/10.1175/1520-0493(1961)089<0482:TOOAWA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barrett, B. S., E. R. Sanabia, S. C. Reynolds, J. K. Stapleton, and A. L. Borrego, 2016: Evolution of the upper tropospheric outflow in Hurricanes Iselle and Julio (2014) in the Navy Global Environmental Model (NAVGEM) analyses and in satellite and dropsonde observations. J. Geophys. Res. Atmos., 121, 13 27313 286, https://doi.org/10.1002/2016JD025656.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bentley, A. M., D. Keyser, and L. F. Bosart, 2016: A dynamically based climatology of subtropical cyclones that undergo tropical transition in the North Atlantic basin. Mon. Wea. Rev., 144, 20492068, https://doi.org/10.1175/MWR-D-15-0251.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bentley, A. M., L. F. Bosart, and D. Keyser, 2017: Upper-tropospheric precursors to the formation of subtropical cyclones that undergo tropical transition in the North Atlantic basin. Mon. Wea. Rev., 145, 503520, https://doi.org/10.1175/MWR-D-16-0263.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bosart, L. F., C. S. Velden, W. E. Bracken, J. Molinari, and P. G. Black, 2000: Environmental influences on the rapid intensification of Hurricane Opal (1995) over the Gulf of Mexico. Mon. Wea. Rev., 128, 322352, https://doi.org/10.1175/1520-0493(2000)128<0322:EIOTRI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, S., and Coauthors, 2003: COAMPS version 3 model description: General theory and equations. Naval Research Laboratory Tech. Rep. NRL/PU7500-04-448, 141 pp.

  • Davis, C. A., and L. F. Bosart, 2003: Baroclinically induced tropical cyclogenesis. Mon. Wea. Rev., 131, 27302747, https://doi.org/10.1175/1520-0493(2003)131<2730:BITC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davis, C. A., and L. F. Bosart, 2004: The TT problem: Forecasting the tropical transition of cyclones. Bull. Amer. Meteor. Soc., 85, 16571662, https://doi.org/10.1175/BAMS-85-11-1657.

    • Search Google Scholar
    • Export Citation
  • DeMaria, M., J.-J. Baik, and J. Kaplan, 1993: Upper-level eddy angular momentum fluxes and tropical cyclone intensity change. J. Atmos. Sci., 50, 11331147, https://doi.org/10.1175/1520-0469(1993)050<1133:ULEAMF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doyle, J. D., and Coauthors, 2012: Real time tropical cyclone prediction using COAMPS-TC. Atmospheric Science (AS) And Ocean Science (OS), C.-C. Wu and J. Gan, Eds., Advances in Geosciences, Vol. 28, World Scientific, 15–28, https://doi.org/10.1142/9789814405683_0002.

    • Crossref
    • Export Citation
  • Doyle, J. D., and Coauthors, 2014: Tropical cyclone prediction using COAMPS-TC. Oceanography, 27 (3), 104115, https://doi.org/10.5670/oceanog.2014.72.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doyle, J. D., and Coauthors, 2017: A view of tropical cyclones from above: The Tropical Cyclone Intensity Experiment. Bull. Amer. Meteor. Soc., 98, 21132134, https://doi.org/10.1175/BAMS-D-16-0055.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fischer, M. S., B. H. Tang, and K. L. Corbosiero, 2017: Assessing the influence of upper-tropospheric troughs on tropical cyclone intensification rates after genesis. Mon. Wea. Rev., 145, 12951313, https://doi.org/10.1175/MWR-D-16-0275.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Galarneau, T. J., R. McTaggart-Cowan, L. F. Bosart, and C. A. Davis, 2015: Development of North Atlantic tropical disturbances near upper-level potential vorticity streamers. J. Atmos. Sci., 72, 572597, https://doi.org/10.1175/JAS-D-14-0106.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ge, X., T. Li, Y. Wang, and M. S. Peng, 2008: Tropical cyclone energy dispersion in a three-dimensional primitive equation model: Upper-tropospheric influence. J. Atmos. Sci., 65, 22722289, https://doi.org/10.1175/2007JAS2431.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guishard, M. P., J. L. Evans, and R. E. Hart, 2009: Atlantic subtropical storms. Part II: Climatology. J. Climate, 22, 35743594, https://doi.org/10.1175/2008JCLI2346.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hack, J. J., and W. H. Schubert, 1986: Nonlinear response of atmospheric vortices to heating by organized cumulus convection. J. Atmos. Sci., 43, 15591573, https://doi.org/10.1175/1520-0469(1986)043<1559:NROAVT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hanley, D., J. Molinari, and D. Keyser, 2001: A composite study of the interactions between tropical cyclones and upper-tropospheric troughs. Mon. Wea. Rev., 129, 25702584, https://doi.org/10.1175/1520-0493(2001)129<2570:ACSOTI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hodur, R. M., 1997: The Naval Research Laboratory’s Coupled Ocean/Atmosphere Mesoscale Prediction System (COAMPS). Mon. Wea. Rev., 125, 14141430, https://doi.org/10.1175/1520-0493(1997)125<1414:TNRLSC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holland, G. J., and R. T. Merrill, 1984: On the dynamics of tropical cyclone structural changes. Quart. J. Roy. Meteor. Soc., 110, 723745, https://doi.org/10.1002/qj.49711046510.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holton, J. R., 2004: An Introduction to Dynamic Meteorology. 4th ed. Elsevier Academic, 535 pp.

  • Jin, Y., W. T. Thompson, S. Wang, and C.-S. Liou, 2007: A numerical study of the effect of dissipative heating on tropical cyclone intensity. Wea. Forecasting, 22, 950966, https://doi.org/10.1175/WAF1028.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, S. C., 1995: The evolution of vortices in vertical shear: Initially barotropic vortices. Quart. J. Roy. Meteor. Soc., 121, 821851, https://doi.org/10.1002/qj.49712152406.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, S. C., 2000a: The evolution of vortices in vertical shear. II: Large-scale asymmetries. Quart. J. Roy. Meteor. Soc., 126, 31373159, https://doi.org/10.1002/qj.49712657008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, S. C., 2000b: The evolution of vortices in vertical shear. III: Baroclinic vortices. Quart. J. Roy. Meteor. Soc., 126, 31613185, https://doi.org/10.1002/qj.49712657009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jordan, C. L., 1958: Mean soundings for the West Indies area. J. Meteor., 15, 9197, https://doi.org/10.1175/1520-0469(1958)015<0091:MSFTWI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kain, J. S., and J. M. Fritsch, 1990: A one-dimensional entraining/detraining plume model and its application in convective parameterization. J. Atmos. Sci., 47, 27842802, https://doi.org/10.1175/1520-0469(1990)047<2784:AODEPM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kimball, S. K., and J. L. Evans, 2002: Idealized numerical simulations of hurricane–trough interaction. Mon. Wea. Rev., 130, 22102227, https://doi.org/10.1175/1520-0493(2002)130<2210:INSOHT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klemp, J. B., and R. B. Wilhelmson, 1978: The simulation of three-dimensional convective storm dynamics. J. Atmos. Sci., 35, 10701096, https://doi.org/10.1175/1520-0469(1978)035<1070:TSOTDC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Komaromi, W. A., and J. D. Doyle, 2017: Tropical cyclone outflow and warm core structure as revealed by HS3 dropsonde data. Mon. Wea. Rev., 145, 13391359, https://doi.org/10.1175/MWR-D-16-0172.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leroux, M.-D., M. Plu, D. Barbary, F. Roux, and P. Arbogast, 2013: Dynamical and physical processes leading to tropical cyclone intensification under upper-level trough forcing. J. Atmos. Sci., 70, 25472565, https://doi.org/10.1175/JAS-D-12-0293.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leroux, M.-D., M. Plu, and F. Roux, 2016: On the sensitivity of tropical cyclone intensification under upper-level trough forcing. Mon. Wea. Rev., 144, 11791202, https://doi.org/10.1175/MWR-D-15-0224.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lewis, B. M., and D. P. Jorgensen, 1978: Study of the dissipation of Hurricane Gertrude (1974). Mon. Wea. Rev., 106, 12881306, https://doi.org/10.1175/1520-0493(1978)106<1288:SOTDOH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, Y.-L., R. D. Farley, and H. D. Orville, 1983: Bulk parameterization of the snow field in a cloud model. J. Climate Appl. Meteor., 22, 10651092, https://doi.org/10.1175/1520-0450(1983)022<1065:BPOTSF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Merrill, R. T., 1988a: Environmental influences on hurricane intensification. J. Atmos. Sci., 45, 16781687, https://doi.org/10.1175/1520-0469(1988)045<1678:EIOHI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Merrill, R. T., 1988b: Characteristics of the upper-tropospheric environmental flow around hurricanes. J. Atmos. Sci., 45, 16651677, https://doi.org/10.1175/1520-0469(1988)045<1665:COTUTE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Merrill, R. T., and C. S. Velden, 1996: A three-dimensional analysis of the outflow layer of Supertyphoon Flo (1990). Mon. Wea. Rev., 124, 4763, https://doi.org/10.1175/1520-0493(1996)124<0047:ATDAOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Molinari, J., and D. Vollaro, 1989: External influences on hurricane intensity. Part I: Outflow layer eddy angular momentum fluxes. J. Atmos. Sci., 46, 10931105, https://doi.org/10.1175/1520-0469(1989)046<1093:EIOHIP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Molinari, J., and D. Vollaro, 1990: External influences on hurricane intensity. Part II: Vertical structure and response of the hurricane vortex. J. Atmos. Sci., 47, 19021918, https://doi.org/10.1175/1520-0469(1990)047<1902:EIOHIP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Molinari, J., and D. Vollaro, 2014: Symmetric instability in the outflow layer of a major hurricane. J. Atmos. Sci., 71, 37393746, https://doi.org/10.1175/JAS-D-14-0117.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Molinari, J., S. Skubis, and D. Vollaro, 1995: External influences on hurricane intensity. Part III: Potential vorticity structure. J. Atmos. Sci., 52, 35933606, https://doi.org/10.1175/1520-0469(1995)052<3593:EIOHIP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nolan, D. S., E. D. Rappin, and K. A. Emanuel, 2007: Tropical cyclogenesis sensitivity to environmental parameters in environments of radiative–convective equilibrium. Quart. J. Roy. Meteor. Soc., 133, 20852107, https://doi.org/10.1002/qj.170.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nong, S., and K. A. Emanuel, 2003: A numerical study of the genesis of concentric eyewalls in hurricanes. Quart. J. Roy. Meteor. Soc., 129, 33233338, https://doi.org/10.1256/qj.01.132.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Palmén, E., and C. W. Newton, 1969: Atmospheric Circulation Systems: Their Structure and Physical Interpretation. Academic Press, 603 pp.

  • Peirano, C. M., K. L. Corbosiero, and B. H. Tang, 2016: Revisiting trough interactions and tropical cyclone intensity change. Geophys. Res. Lett., 43, 55095515, https://doi.org/10.1002/2016GL069040.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peng, M. S., B.-F. Jeng, and R. T. Williams, 1999: A numerical study on tropical cyclone intensification. Part I: Beta effect and mean flow effect. J. Atmos. Sci., 56, 14041423, https://doi.org/10.1175/1520-0469(1999)056<1404:ANSOTC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Posselt, D. J., and J. E. Martin, 2004: The effect of latent heat release on the evolution of a warm occluded thermal structure. Mon. Wea. Rev., 132, 578599, https://doi.org/10.1175/1520-0493(2004)132<0578:TEOLHR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rappin, E. D., M. C. Morgan, and G. J. Tripoli, 2011: The impact of outflow environment on tropical cyclone intensification and structure. J. Atmos. Sci., 68, 177194, https://doi.org/10.1175/2009JAS2970.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Raymond, D. J., 1992: Nonlinear balance and potential vorticity thinking at large Rossby number. Quart. J. Roy. Meteor. Soc., 118, 9871015, https://doi.org/10.1002/qj.49711850708.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reasor, P. D., M. T. Montgomery, and L. D. Grasso, 2004: A new look at the problem of tropical cyclones in vertical shear flow: Vortex resiliency. J. Atmos. Sci., 61, 322, https://doi.org/10.1175/1520-0469(2004)061<0003:ANLATP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Riehl, H., 1948: On the formation of typhoons. J. Meteor., 5, 247264, https://doi.org/10.1175/1520-0469(1948)005<0247:OTFOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Riehl, H., 1954: Tropical Meteorology. McGraw-Hill, 392 pp.

  • Riemer, M., and M. T. Montgomery, 2011: Simple kinematic models for the environmental interaction of tropical cyclones in vertical wind shear. Atmos. Chem. Phys., 11, 93959414, https://doi.org/10.5194/acp-11-9395-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rios-Berrios, R., R. D. Torn, and C. A. Davis, 2016: An ensemble approach to investigate tropical cyclone intensification in sheared environments. Part II: Ophelia (2011). J. Atmos. Sci., 73, 15551575, https://doi.org/10.1175/JAS-D-15-0245.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rodgers, E. B., S. W. Chang, J. Stout, J. Steranka, and J. J. Shi, 1991: Satellite observations of variations in tropical cyclone convection caused by upper-tropospheric troughs. J. Appl. Meteor., 30, 11631184, https://doi.org/10.1175/1520-0450(1991)030<1163:SOOVIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rutledge, S. A., and P. V. Hobbs, 1983: The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones. VIII: A model for the “seeder-feeder” process in warm-frontal rainbands. J. Atmos. Sci., 40, 11851206, https://doi.org/10.1175/1520-0469(1983)040<1185:TMAMSA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sadler, J. C., 1967: The tropical upper tropospheric trough as a secondary source of typhoons and a primary source of trade wind disturbances. Hawai‘i Institute of Geophysics Tech. Rep. 6712, 44 pp.

  • Sadler, J. C., 1976: A role of the tropical upper tropospheric trough in early season typhoon development. Mon. Wea. Rev., 104, 12661278, https://doi.org/10.1175/1520-0493(1976)104<1266:AROTTU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sadler, J. C., 1978: Mid-season typhoon development and intensity changes and the tropical upper-tropospheric trough. Mon. Wea. Rev., 106, 11371152, https://doi.org/10.1175/1520-0493(1978)106<1137:MSTDAI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schecter, D. A., 2015: Response of a simulated hurricane to misalignment forcing compared to the predictions of a simple theory. J. Atmos. Sci., 72, 12351260, https://doi.org/10.1175/JAS-D-14-0149.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schubert, W. H., and J. J. Hack, 1982: Inertial stability and tropical cyclone development. J. Atmos. Sci., 39, 16871697, https://doi.org/10.1175/1520-0469(1982)039<1687:ISATCD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shapiro, L. J., and H. E. Willoughby, 1982: The response of balanced hurricanes to local sources of heat and momentum. J. Atmos. Sci., 39, 378394, https://doi.org/10.1175/1520-0469(1982)039<0378:TROBHT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shi, J.-J., S. W.-J. Chang, and S. Raman, 1990: A numerical study of the outflow layer of tropical cyclones. Mon. Wea. Rev., 118, 20422055, https://doi.org/10.1175/1520-0493(1990)118<2042:ANSOTO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shi, J.-J., S. W.-J. Chang, and S. Raman, 1997: Interaction between Hurricane Florence (1988) and an upper-tropospheric westerly trough. J. Atmos. Sci., 54, 12311247, https://doi.org/10.1175/1520-0469(1997)054<1231:IBHFAA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stern, D. P., and F. Zhang, 2013: How does the eye warm? Part I: A potential temperature budget analysis of an idealized tropical cyclone. J. Atmos. Sci., 70, 7390, https://doi.org/10.1175/JAS-D-11-0329.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Titley, D. W., and R. L. Elsberry, 2000: Large intensity changes in tropical cyclones: A case study of Supertyphoon Flo during TCM-90. Mon. Wea. Rev., 128, 35563573, https://doi.org/10.1175/1520-0493(2000)128<3556:LICITC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Van Sang, N., R. K. Smith, and M. T. Montgomery, 2008: Tropical-cyclone intensification and predictability in three dimensions. Quart. J. Roy. Meteor. Soc., 134, 563582, https://doi.org/10.1002/qj.235.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yamada, T., and G. L. Mellor, 1975: A simulation of the Wangara atmospheric boundary layer data. J. Atmos. Sci., 32, 23092329, https://doi.org/10.1175/1520-0469(1975)032<2309:ASOTWA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, H., and H. J. Kwon, 2005: Effect of TC–trough interaction on the intensity change of two typhoons. Wea. Forecasting, 20, 199211, https://doi.org/10.1175/WAF836.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 53 53 53
PDF Downloads 18 18 18

On the Dynamics of Tropical Cyclone and Trough Interactions

View More View Less
  • 1 Naval Research Laboratory, Monterey, California
Restricted access

Abstract

The interaction between a tropical cyclone (TC) and an upper-level trough is simulated in an idealized framework using Coupled Ocean–Atmosphere Mesoscale Prediction System (COAMPS) for Tropical Cyclones (COAMPS-TC) on a β plane. We explore the effect of the trough on the environment, structure, and intensity of the TC. In a simulation that does not have a trough, environmental inertial stability is dominated by Coriolis, and outflow remains preferentially directed equatorward throughout the simulation. In the presence of a trough, negative storm-relative tangential wind in the base of the trough reduces the inertial stability such that the outflow shifts from equatorward to poleward. This interaction results in a ~24-h period of enhanced upper-level divergence coincident with intensification of the TC. Sensitivity tests reveal that if the TC is too far from the trough, favorable interaction does not occur. If the TC is too close to the trough, the storm weakens because of enhanced vertical wind shear. Only when the relative distance between the TC and the trough is 0.2–0.3 times the wavelength of the trough in x and 0.8–1.2 times the amplitude of the trough in y does favorable interaction and TC intensification occur. However, stochastic effects make it difficult to isolate the intensity change associated directly with the trough interaction. Outflow is found to be predominantly ageostrophic at small radii and deflects to the right (in the Northern Hemisphere) since it is unbalanced. The outflow becomes predominantly geostrophic at larger radii but not before a rightward deflection has already occurred. This finding sheds light on why the outflow accelerates toward but generally never reaches the region of lowest inertial stability.

For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: William A. Komaromi, will.komaromi@nrlmry.navy.mil

This article is included in the Tropical Cyclone Intensity Experiment (TCI) Special Collection.

Abstract

The interaction between a tropical cyclone (TC) and an upper-level trough is simulated in an idealized framework using Coupled Ocean–Atmosphere Mesoscale Prediction System (COAMPS) for Tropical Cyclones (COAMPS-TC) on a β plane. We explore the effect of the trough on the environment, structure, and intensity of the TC. In a simulation that does not have a trough, environmental inertial stability is dominated by Coriolis, and outflow remains preferentially directed equatorward throughout the simulation. In the presence of a trough, negative storm-relative tangential wind in the base of the trough reduces the inertial stability such that the outflow shifts from equatorward to poleward. This interaction results in a ~24-h period of enhanced upper-level divergence coincident with intensification of the TC. Sensitivity tests reveal that if the TC is too far from the trough, favorable interaction does not occur. If the TC is too close to the trough, the storm weakens because of enhanced vertical wind shear. Only when the relative distance between the TC and the trough is 0.2–0.3 times the wavelength of the trough in x and 0.8–1.2 times the amplitude of the trough in y does favorable interaction and TC intensification occur. However, stochastic effects make it difficult to isolate the intensity change associated directly with the trough interaction. Outflow is found to be predominantly ageostrophic at small radii and deflects to the right (in the Northern Hemisphere) since it is unbalanced. The outflow becomes predominantly geostrophic at larger radii but not before a rightward deflection has already occurred. This finding sheds light on why the outflow accelerates toward but generally never reaches the region of lowest inertial stability.

For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: William A. Komaromi, will.komaromi@nrlmry.navy.mil

This article is included in the Tropical Cyclone Intensity Experiment (TCI) Special Collection.

Save