• Donelan, M. A., 1987: The effect of swell on the growth of wind waves. Johns Hopkins APL Tech. Dig., 8, 1823.

  • Drennan, W. M., and E. Sahlée, 2018: FETCH data. Uppsala University. Subset used: 22–23 March 1998, accessed 12 March 2018, http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-345778.

  • Drennan, W. M., K. K. Kahma, and M. A. Donelan, 1999a: On momentum flux and velocity spectra over waves. Bound.-Layer Meteor., 92, 489515, https://doi.org/10.1023/A:1002054820455.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Drennan, W. M., H. C. Graber, and M. A. Donelan, 1999b: Evidence for the effects of swell and unsteady winds on marine wind stress. J. Phys. Oceanogr., 29, 18531864, https://doi.org/10.1175/1520-0485(1999)029<1853:EFTEOS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Drennan, W. M., H. C. Graber, D. Hauser, and C. Quentin, 2003: On the wave age dependence of wind stress over pure wind seas. J. Geophys. Res., 108, 8062, https://doi.org/10.1029/2000JC000715.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Graber, H. C., E. A. Terray, M. A. Donelan, W. M. Drennan, J. Van Leer, and D. B. Peters, 2000: ASIS—A new air-sea interaction spar buoy: Design and performance at sea. J. Atmos. Oceanic Technol., 17, 708720, https://doi.org/10.1175/1520-0426(2000)017<0708:AANASI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grachev, A. A., and C. W. Fairall, 2001: Upward momentum transfer in the marine boundary layer. J. Phys. Oceanogr., 31, 16981711, https://doi.org/10.1175/1520-0485(2001)031<1698:UMTITM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hanley, K. E., and S. E. Belcher, 2008: Wave-driven wind jets in the marine atmospheric boundary layer. J. Atmos. Sci., 65, 26462660, https://doi.org/10.1175/2007JAS2562.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hauser, D., and Coauthors, 2003: The FETCH experiment: An overview. J. Geophys. Res., 108, 8053, https://doi.org/10.1029/2001JC001202.

  • Hessner, K., K. Reichert, J. Dittmer, and J. C. Nieto Borge, 2001: Evaluation of WaMoS II wave data. Ocean Wave Measurement and Analysis: Proceedings of the Fourth International Symposium Waves 2001, B. L. Edge and J. M. Hemsley, Eds., Vol. I, ASCE, 221–230.

    • Crossref
    • Export Citation
  • Hessner, K., K. Reichert, J. Dannenberg, K. Hathaway, and D. Resio, 2007: 2D surface elevation measurements by means of X-band radar: An application of WAMOS II at Duck. Ninth International Workshop on Hindcasting and Forecasting, JCOMM Tech. Rep. 34, WMO/TD-1368, 13 pp., https://www.wmo.int/pages/prog/amp/mmop/documents/JCOMM-TR/J-TR-34-9th-waves-workshop/Papers/Hessner.pdf.

  • Högström, U., A. Smedman, E. Sahlée, W. M. Drennan, K. K. Kahma, H. Pettersson, and F. Zhang, 2009: The atmospheric boundary layer during swell: A field study and interpretation of the turbulent kinetic energy budget for high wave ages. J. Atmos. Sci., 66, 27642779, https://doi.org/10.1175/2009JAS2973.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Högström, U., A. Smedman, A. Semedo, and A. Rutgersson, 2011: Comments on “A global climatology of wind-wave interaction” by Kirsty E. Hanley, Stephen E. Belcher and Peter P. Sullivan. J. Phys. Oceanogr., 41, 18111813, https://doi.org/10.1175/JPO-D-10-05015.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Högström, U., A. Rutgersson, E. Sahlée, A. Smedman, T. Hristov, W. M. Drennan, and K. K. Kahma, 2013: Air–sea interaction features in the Baltic Sea and at a Pacific trade-wind site: An inter-comparison study. Bound.-Layer Meteor., 147, 139163, https://doi.org/10.1007/s10546-012-9776-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Högström, U., A. Smedman, E. Sahlée, A. Rutgersson, E. Nilsson, K. K. Kahma, and W. M. Drennan, 2015: Surface stress over the ocean in swell-dominated conditions during moderate winds. J. Atmos. Sci., 72, 47774795, https://doi.org/10.1175/JAS-D-15-0139.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiang, Q., P. Sullivan, S. Wang, J. Doyle, and V. Linwood, 2016: Impact of swell on air–sea momentum flux and marine boundary layer under low-wind conditions. J. Atmos. Sci., 73, 26832697, https://doi.org/10.1175/JAS-D-15-0200.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kahma, K. K., 1981: A study of the growth of the wave spectrum with fetch. J. Phys. Oceanogr., 11, 15031515, https://doi.org/10.1175/1520-0485(1981)011<1503:ASOTGO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kahma, K. K., and M. A. Donelan, 1988: A laboratory study of the minimum wind speed for wind wave generation. J. Fluid Mech., 192, 339364, https://doi.org/10.1017/S0022112088001892.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kahma, K. K., and C. J. Calkoen, 1992: Reconciling discrepancies in the observed growth of wind-generated waves. J. Phys. Oceanogr., 22, 13891405, https://doi.org/10.1175/1520-0485(1992)022<1389:RDITOG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kahma, K. K., M. A. Donelan, W. M. Drennan, and E. A. Terray, 2016: Evidence of energy and momentum flux from swell to wind. J. Phys. Oceanogr., 46, 21432156, https://doi.org/10.1175/JPO-D-15-0213.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kawai, S., K. Okada, and Y. Toba, 1977: Field data support of the three-seconds power law and gu*σ−4 spectral form for growing wind waves. J. Oceanogr. Soc. Japan, 33, 137150, https://doi.org/10.1007/BF02109685.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mitsuyasu, H., 1966: Interactions between water waves and wind (1). Rep. Res. Inst. Appl. Mech. (Kyushu Univ.), 14, 6788.

  • Pettersson, H., H. C. Graber, D. Hauser, C. Quentin, K. K. Kahma, W. M. Drennan, and M. A. Donelan, 2003: Directional wave measurements from three wave sensors during the FETCH experiment. J. Geophys. Res., 108, 8061, https://doi.org/10.1029/2001JC001164.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reistad, M., O. Breivik, H. Haakenstad, O. J. Aarnes and B. R. Furevik, 2009: A high-resolution hindcast of wind and waves for the North Sea, the Norwegian Sea and the Barents Sea. Norwegian Institute Research Rep. 2009/14, XXX pp.

  • Resio, D. T., C. E. Long, and C. L. Vincent, 2004: Equilibrium-range constant in wind-generated wave spectra. J. Geophys. Res., 109, C01018, https://doi.org/10.1029/2003JC001788.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Similä, M., I. Heiler, J. Karvonen, and K. Kahma, 2006: On C-band SCAR based oil slick detection in the Baltic Sea. Proceedings of SEASAR 2006: Advances in SAR Oceanography from Envisat and ERS Missions, H. Lacoste and L. Ouwehand, Eds., ESA Special Publ. SP-613, 6 pp., http://earth.esa.int/workshops/seasar2006/proceedings/papers/186_simil.pdf.

  • Smedman, A.-S., M. Tjernström, and U. Högström, 1994: The near-neutral marine atmospheric boundary layer with no surface shearing stress: A case study. J. Atmos. Sci., 51, 33993411, https://doi.org/10.1175/1520-0469(1994)051<3399:TNNMAB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smedman, A.-S., X. Guo Larsén, U. Högström, K. K. Kahma and H. Pettersson, 2003: Effect of sea state on the momentum exchange over the sea during neutral conditions. J. Geophys. Res., 108, 3367, https://doi.org/1029/2002JC001526.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sullivan, P. P., J. B. Edson, T. Hristov, and J. C. McWilliams, 2008: Large-eddy simulations and observations of atmospheric marine boundary layers above nonequilibrium surface waves. J. Atmos. Sci., 65, 12251245, https://doi.org/10.1175/2007JAS2427.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Volkov, Y. A., 1970: Turbulent flux of momentum and heat in the atmospheric surface layer over a disturbed sea surface. Izv. Atmos. Oceanic Phys., 6, 770774.

    • Search Google Scholar
    • Export Citation
  • Wen, X., and S. Mobbs, 2014: Numerical simulation of laminar air–water flow of a non-linear progressive wave at low wind speed. Bound.-Layer Meteor., 150, 381398, https://doi.org/10.1007/s10546-013-9876-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 6 6 6
PDF Downloads 4 4 4

The Transition from Downward to Upward Air–Sea Momentum Flux in Swell-Dominated Light Wind Conditions

View More View Less
  • 1 Meteorology, Department of Earth Sciences, Uppsala University, Uppsala, Sweden
  • | 2 Finnish Meteorological Institute, Helsinki, Finland
  • | 3 Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida
Restricted access

Abstract

Fifteen hours of consecutive swell data from the experiment Flux, État de la Mer, et Télédétection en Condition de Fetch Variable (FETCH) in the Mediterranean show a distinct upward momentum flux. The characteristics are shown to vary systematically with wind speed. A hysteresis effect is found for wave energy of the wind-sea waves when represented as a function of wind speed, displaying higher energy during decaying winds compared to increasing winds. For the FETCH measurements, the upward momentum transfer regime is found to begin for wind speeds lower than about U = 4 m s−1. For the lowest observed wind speeds U < 2.4 m s−1, the water surface appears to be close to dynamically smooth. In this range almost all the upward momentum flux is accomplished by the peak in the cospectrum between the vertical and horizontal components of the wind velocity. It is demonstrated that this contribution in turn is linearly related to the swell significant wave height Hsd in the range 0.6 < Hsd < 1.4 m. For Hsd < 0.6 m, the contribution is zero in the present dataset but may depend on the swell magnitude in other situations. It is speculated that the observed upward momentum flux in the smooth regime, which is so strongly related to the cospectral peak at the dominant swell frequency, might be caused by the recirculation mechanism found by Wen and Mobbs in their numerical simulation of laminar flow of a nonlinear progressive wave at low wind speed.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Erik Sahlée, erik.sahlee@met.uu.se

Abstract

Fifteen hours of consecutive swell data from the experiment Flux, État de la Mer, et Télédétection en Condition de Fetch Variable (FETCH) in the Mediterranean show a distinct upward momentum flux. The characteristics are shown to vary systematically with wind speed. A hysteresis effect is found for wave energy of the wind-sea waves when represented as a function of wind speed, displaying higher energy during decaying winds compared to increasing winds. For the FETCH measurements, the upward momentum transfer regime is found to begin for wind speeds lower than about U = 4 m s−1. For the lowest observed wind speeds U < 2.4 m s−1, the water surface appears to be close to dynamically smooth. In this range almost all the upward momentum flux is accomplished by the peak in the cospectrum between the vertical and horizontal components of the wind velocity. It is demonstrated that this contribution in turn is linearly related to the swell significant wave height Hsd in the range 0.6 < Hsd < 1.4 m. For Hsd < 0.6 m, the contribution is zero in the present dataset but may depend on the swell magnitude in other situations. It is speculated that the observed upward momentum flux in the smooth regime, which is so strongly related to the cospectral peak at the dominant swell frequency, might be caused by the recirculation mechanism found by Wen and Mobbs in their numerical simulation of laminar flow of a nonlinear progressive wave at low wind speed.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Erik Sahlée, erik.sahlee@met.uu.se
Save