• Aberson, S. D., J. P. Dunion, and F. D. Marks Jr., 2006: A photograph of a wavenumber-2 asymmetry in the eye of Hurricane Erin. J. Atmos. Sci., 63, 387391, https://doi.org/10.1175/JAS3593.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Billant, P., and S. Le Dizès, 2009: Waves on a columnar vortex in a strongly stratified fluid. Phys. Fluids, 21, 106602, https://doi.org/10.1063/1.3248366.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Braun, S. A., 2002: A cloud-resolving simulation of Hurricane Bob (1991): Storm structure and eyewall buoyancy. Mon. Wea. Rev., 130, 15731592, https://doi.org/10.1175/1520-0493(2002)130<1573:ACRSOH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Briggs, R. J., J. D. Daugherty, and R. H. Levy, 1970: Role of Landau damping in crossed-field electron beams and inviscid shear flow. Phys. Fluids, 13, 421432, https://doi.org/10.1063/1.1692936.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brunet, G., 1994: Empirical normal-mode analysis of atmospheric data. J. Atmos. Sci., 51, 932952, https://doi.org/10.1175/1520-0469(1994)051<0932:ENMAOA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, Y., G. Brunet, and M. K. Yau, 2003: Spiral bands in a simulated hurricane. Part II: Wave activity diagnostics. J. Atmos. Sci., 60, 12391256, https://doi.org/10.1175/1520-0469(2003)60<1239:SBIASH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Corbosiero, K. L., J. Molinari, A. R. Aiyyer, and M. L. Black, 2006: The structure and evolution of Hurricane Elena (1985). Part II: Convective asymmetries and evidence for vortex Rossby waves. Mon. Wea. Rev., 134, 30733091, https://doi.org/10.1175/MWR3250.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ford, R., 1994a: The instability of an axisymmetric vortex with monotonic potential vorticity in rotating shallow water. J. Fluid Mech., 280, 303334, https://doi.org/10.1017/S0022112094002946.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ford, R., 1994b: The response of a rotating ellipse of uniform potential vorticity to gravity wave radiation. Phys. Fluids, 6, 36943704, https://doi.org/10.1063/1.868360.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Held, I. M., 1985: Pseudomomentum and the orthogonality of modes in shear flows. J. Atmos. Sci., 42, 22802288, https://doi.org/10.1175/1520-0469(1985)042<2280:PATOOM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hodyss, D., and D. S. Nolan, 2008: The Rossby-inertia-buoyancy instability in baroclinic vortices. Phys. Fluids, 20, 096602, https://doi.org/10.1063/1.2980354.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., and F. P. Bretherton, 1972: Atmospheric frontogenesis models: Mathematical formulation and solution. J. Atmos. Sci., 29, 1137, https://doi.org/10.1175/1520-0469(1972)029<0011:AFMMFA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jordan, C. L., 1958: Mean soundings for the West Indies area. J. Meteor., 15, 9197, https://doi.org/10.1175/1520-0469(1958)015<0091:MSFTWI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kossin, J. P., W. H. Schubert, and M. T. Montgomery, 2000: Unstable interactions between a hurricane’s primary eyewall and a secondary ring of enhanced vorticity. J. Atmos. Sci., 57, 38933917, https://doi.org/10.1175/1520-0469(2001)058<3893:UIBAHS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuo, H.-C., R. T. Williams, and J.-H. Chen, 1999: A possible mechanism for the eye rotation of Typhoon Herb. J. Atmos. Sci., 56, 16591673, https://doi.org/10.1175/1520-0469(1999)056<1659:APMFTE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, X., J. A. Zhang, X. Yang, W. G. Pichel, M. DeMaria, D. Long, and Z. Li, 2013: Tropical cyclone morphology from spaceborne synthetic aperture radar. Bull. Amer. Meteor. Soc., 94, 215230, https://doi.org/10.1175/BAMS-D-11-00211.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Menelaou, K., D. A. Schecter, and M. K. Yau, 2016: On the relative contribution of inertia–gravity wave radiation to asymmetric instabilities in tropical cyclone–like vortices. J. Atmos. Sci., 73, 33453370, https://doi.org/10.1175/JAS-D-15-0360.1; Corrigendum, 73, 4605, https://doi.org/10.1175/JAS-D-16-0261.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mitsuta, Y., and S. Yoshizumi, 1973: Periodic variations of pressure, wind and rainfall observed at Miyakojima during the second Miyakojima typhoon. J. Meteor. Soc. Japan, 51, 475485, https://doi.org/10.2151/jmsj1965.51.6_475.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Naylor, J., and D. A. Schecter, 2014: Evaluation of the impact of moist convection on the development of asymmetric inner core instabilities in simulated tropical cyclones. J. Adv. Model. Earth Syst., 6, 10271048, https://doi.org/10.1002/2014MS000366.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nolan, D. S., M. T. Montgomery, and L. D. Grasso, 2001: The wavenumber-one instability and trochoidal motion of hurricane-like vortices. J. Atmos. Sci., 58, 32433270, https://doi.org/10.1175/1520-0469(2001)058<3243:TWOIAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nuissier, O., R. F. Rogers, and F. Roux, 2005: A numerical simulation of Hurricane Bret on 22–23 August 1999 initialized with airborne Doppler radar and dropsonde data. Quart. J. Roy. Meteor. Soc., 131, 155194, https://doi.org/10.1256/qj.02.233.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oda, M., T. Itano, G. Naito, M. Nakanishi, and K. Tomine, 2005: Destabilization of the symmetric vortex and formation of the elliptical eye of Typhoon Herb. J. Atmos. Sci., 62, 29652976, https://doi.org/10.1175/JAS3521.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Park, J., and P. Billant, 2013: Instabilities and waves on a columnar vortex in a strongly stratified and rotating fluid. Phys. Fluids, 25, 086601, https://doi.org/10.1063/1.4816512.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Plougonven, R., and V. Zeitlin, 2002: Internal gravity wave emission from a pancake vortex: An example of wave-vortex interaction in strongly stratified flows. Phys. Fluids, 14, 12591268, https://doi.org/10.1063/1.1448297.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reasor, P. D., M. T. Montgomery, F. D. Marks Jr., and J. F. Gamache, 2000: Low-wavenumber structure and evolution of the hurricane inner core observed by airborne dual-Doppler radar. Mon. Wea. Rev., 128, 16531680, https://doi.org/10.1175/1520-0493(2000)128<1653:LWSAEO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schecter, D. A., 2008: The spontaneous imbalance of an atmospheric vortex at high Rossby number. J. Atmos. Sci., 65, 24982521, https://doi.org/10.1175/2007JAS2490.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schecter, D. A., 2015: Response of a simulated hurricane to misalignment forcing compared to the predictions of a simple theory. J. Atmos. Sci., 72, 12351260, https://doi.org/10.1175/JAS-D-14-0149.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schecter, D. A., and M. T. Montgomery, 2003: On the symmetrization rate of an intense geophysical vortex. Dyn. Atmos. Oceans, 37, 5588, https://doi.org/10.1016/S0377-0265(03)00015-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schecter, D. A., and M. T. Montgomery, 2004: Damping and pumping of a vortex Rossby wave in a monotonic cyclone: Critical layer stirring versus inertia-buoyancy wave emission. Phys. Fluids, 16, 13341348, https://doi.org/10.1063/1.1651485.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schecter, D. A., and M. T. Montgomery, 2006: Conditions that inhibit the spontaneous radiation of spiral inertia–gravity waves from an intense mesoscale cyclone. J. Atmos. Sci., 63, 435456, https://doi.org/10.1175/JAS3641.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schecter, D. A., and M. T. Montgomery, 2007: Waves in a cloudy vortex. J. Atmos. Sci., 64, 314337, https://doi.org/10.1175/JAS3849.1.

  • Schecter, D. A., and K. Menelaou, 2017: Note on analyzing perturbation growth in a tropical cyclone–like vortex radiating inertia–gravity waves. J. Atmos. Sci., 74, 15611571, https://doi.org/10.1175/JAS-D-16-0289.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schubert, W. H., M. T. Montgomery, R. K. Taft, T. A. Guinn, S. R. Fulton, J. P. Kossin, and J. P. Edwards, 1999: Polygonal eyewalls, asymmetric eye contraction, and potential vorticity mixing in hurricanes. J. Atmos. Sci., 56, 11971223, https://doi.org/10.1175/1520-0469(1999)056<1197:PEAECA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shapiro, L. J., and M. T. Montgomery, 1993: A three-dimensional balance theory for rapidly rotating vortices. J. Atmos. Sci., 50, 33223335, https://doi.org/10.1175/1520-0469(1993)050<3322:ATDBTF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp., https://doi.org/10.5065/D68S4MVH.

    • Crossref
    • Export Citation
  • Takehiro, S.-I., and Y.-Y. Hayashi, 1992: Over-reflection and shear instability in a shallow-water model. J. Fluid Mech., 236, 259279, https://doi.org/10.1017/S0022112092001411.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Y., and C.-C. Wu, 2004: Current understanding of tropical cyclone structure and intensity changes—A review. Meteor. Atmos. Phys., 87, 257278, https://doi.org/10.1007/s00703-003-0055-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 35 35 35
PDF Downloads 4 4 4

Spontaneous Emission of Spiral Inertia–Gravity Waves and Formation of Elliptical Eyewalls in Tropical Cyclone–Like Vortices: Three-Dimensional Nonlinear Simulations

View More View Less
  • 1 Department of Atmospheric and Oceanic Sciences, McGill University, Montreal, Quebec, Canada
Restricted access

Abstract

Although intense tropical cyclones (TCs) are considered to be axisymmetric vortices, observations reveal that they are often highly asymmetric. Better understanding of the underlying asymmetric dynamics is a critical step toward advancing TC intensity forecasting. In this paper, we revisit the mechanisms behind one of the most frequent asymmetric patterns: the deformation of the core into an elliptical shape. Previously, elliptical eyewalls were primarily thought to be an outcome of barotropic instability, a mechanism that involves the coupling and mutual growth of counterpropagating vortex Rossby (VR) waves. These results were largely based on simplified numerical models that filter out inertia–gravity (IG) waves. Consideration of IG waves introduces the possibility of an additional instability mechanism, one that involves a VR wave that spontaneously emits a spiral IG wave into the environment. We provide evidence that elliptical eyewalls, which may form within a three-dimensional primitive-equation nonlinear model that supports both instability types, can solely originate by the mechanism of spontaneous radiative imbalance. These evidences are supported by a number of nonlinear simulations, supplemental linear eigenmode analysis, and a linear simulation. The potential role of a multimechanistic instability is also briefly addressed.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Konstantinos Menelaou, konstantinos.menelaou@mail.mcgill.ca

Abstract

Although intense tropical cyclones (TCs) are considered to be axisymmetric vortices, observations reveal that they are often highly asymmetric. Better understanding of the underlying asymmetric dynamics is a critical step toward advancing TC intensity forecasting. In this paper, we revisit the mechanisms behind one of the most frequent asymmetric patterns: the deformation of the core into an elliptical shape. Previously, elliptical eyewalls were primarily thought to be an outcome of barotropic instability, a mechanism that involves the coupling and mutual growth of counterpropagating vortex Rossby (VR) waves. These results were largely based on simplified numerical models that filter out inertia–gravity (IG) waves. Consideration of IG waves introduces the possibility of an additional instability mechanism, one that involves a VR wave that spontaneously emits a spiral IG wave into the environment. We provide evidence that elliptical eyewalls, which may form within a three-dimensional primitive-equation nonlinear model that supports both instability types, can solely originate by the mechanism of spontaneous radiative imbalance. These evidences are supported by a number of nonlinear simulations, supplemental linear eigenmode analysis, and a linear simulation. The potential role of a multimechanistic instability is also briefly addressed.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Konstantinos Menelaou, konstantinos.menelaou@mail.mcgill.ca
Save