• Bretherton, C. S., P. N. Blossey, and C. R. Jones, 2013: Mechanisms of marine low cloud sensitivity to idealized climate perturbations: A single-LES exploration extending the CGILS cases. J. Adv. Model. Earth Syst., 5, 316337, https://doi.org/10.1002/jame.20019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, T., W. B. Rossow, and Y. Zhang, 2000: Radiative effects of cloud-type variations. J. Climate, 13, 264286, https://doi.org/10.1175/1520-0442(2000)013<0264:REOCTV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Christensen, M. W., G. G. Carrió, G. L. Stephens, and W. R. Cotton, 2013: Radiative impacts of free-tropospheric clouds on the properties of marine stratocumulus. J. Atmos. Sci., 70, 31023118, https://doi.org/10.1175/JAS-D-12-0287.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deardorff, J. W., 1980: Cloud top entrainment instability. J. Atmos. Sci., 37, 131147, https://doi.org/10.1175/1520-0469(1980)037<0131:CTEI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de Lozar, A., and J. P. Mellado, 2013: Direct numerical simulations of a smoke cloud–top mixing layer as a model for stratocumuli. J. Atmos. Sci., 70, 23562375, https://doi.org/10.1175/JAS-D-12-0333.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de Lozar, A., and J. P. Mellado, 2015: Mixing driven by radiative and evaporative cooling at the stratocumulus top. J. Atmos. Sci., 72, 46814700, https://doi.org/10.1175/JAS-D-15-0087.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eastman, R., and R. Wood, 2016: Factors controlling low-cloud evolution over the eastern subtropical oceans: A Lagrangian perspective using the A-Train satellites. J. Atmos. Sci., 73, 331351, https://doi.org/10.1175/JAS-D-15-0193.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eastman, R., R. Wood, and C. S. Bretherton, 2016: Time scales of clouds and cloud-controlling variables in subtropical stratocumulus from a Lagrangian perspective. J. Atmos. Sci., 73, 30793091, https://doi.org/10.1175/JAS-D-16-0050.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eastman, R., R. Wood, and K. T. O, 2017: The subtropical stratocumulus-topped planetary boundary layer: A climatology and the Lagrangian evolution. J. Atmos. Sci., 74, 26332656, https://doi.org/10.1175/JAS-D-16-0336.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Galewsky, J., 2018: Using stable isotopes in water vapor to diagnose relationships between lower-tropospheric stability, mixing, and low-cloud cover near the island of Hawaii. Geophys. Res. Lett., 45, 297305, https://doi.org/10.1002/2017GL075770.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Greenwald, T. J., G. L. Stephens, S. A. Christopher, and T. H. Vonder Haar, 1995: Observations of the global characteristics and regional radiative effects of marine cloud liquid water. J. Climate, 8, 29282946, https://doi.org/10.1175/1520-0442(1995)008<2928:OOTGCA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hartmann, D. L., M. E. Ockert-Bell, and M. L. Michelsen, 1992: The effect of cloud type on Earth’s energy balance: Global analysis. J. Climate, 5, 12811304, https://doi.org/10.1175/1520-0442(1992)005<1281:TEOCTO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Henderson, D. S., T. L’Ecuyer, G. L. Stephens, P. Partain, and M. Sekiguchi, 2013: A multisensor perspective on the radiative impacts of clouds and aerosols. J. Appl. Meteor. Climatol., 52, 853871, https://doi.org/10.1175/JAMC-D-12-025.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hubanks, P. A., M. D. King, S. Platnick, and R. Pincus, 2008: MODIS atmosphere L3 gridded product algorithm theoretical basis document. MODIS Tech. Doc. ATBD-MOD-30, 96 pp.

  • Kawai, H., K. Tsuyoshi, and M. J. Webb, 2017: Interpretation of factors controlling low cloud cover and low cloud feedback using a unified predictive index. J. Climate, 30, 91199131, https://doi.org/10.1175/JCLI-D-16-0825.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • King, M. D., and Coauthors, 2003: Cloud and aerosol properties, precipitable water, and profiles of temperature and water vapor from MODIS. IEEE Trans. Geosci. Remote Sens., 41, 442458, https://doi.org/10.1109/TGRS.2002.808226.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klein, S. A., and D. L. Hartmann, 1993: The seasonal cycle of low stratiform clouds. J. Climate, 6, 15871606, https://doi.org/10.1175/1520-0442(1993)006<1587:TSCOLS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krueger, S. K., G. T. McLean, and Q. Fu, 1995: Numerical simulation of the stratus-to-cumulus transition in the subtropical marine boundary layer. Part I: Boundary-layer structure. J. Atmos. Sci., 52, 28392850, https://doi.org/10.1175/1520-0469(1995)052<2839:NSOTST>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lawrence, M. G., 2005: The relationship between relative humidity and the dewpoint temperature in moist air: A simple conversion and applications. Bull. Amer. Meteor. Soc., 86, 225233, https://doi.org/10.1175/BAMS-86-2-225.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lilly, D. K., 1968: Models of cloud-topped mixed layers under a strong inversion. Quart. J. Roy. Meteor. Soc., 94, 292309, https://doi.org/10.1002/qj.49709440106.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lock, A. P., and M. K. Macvean, 1999a: The generation of turbulence and entrainment by buoyancy reversal. Quart. J. Roy. Meteor. Soc., 125, 10171038, https://doi.org/10.1002/qj.49712555513.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lock, A. P., and M. K. Macvean, 1999b: The parametrization of entrainment driven by surface heating and cloud-top cooling. Quart. J. Roy. Meteor. Soc., 125, 271299, https://doi.org/10.1002/qj.49712555315.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maddux, B. C., S. A. Ackerman, and S. Platnick, 2010: Viewing geometry dependencies in MODIS cloud products. J. Atmos. Oceanic Technol., 27, 15191528, https://doi.org/10.1175/2010JTECHA1432.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mauger, G. S., and J. R. Norris, 2010: Assessing the impact of meteorological history on subtropical cloud fraction. J. Climate, 23, 29262940, https://doi.org/10.1175/2010JCLI3272.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mellado, J. P., 2017: Cloud-top entrainment in stratocumulus clouds. Annu. Rev. Fluid Mech., 49, 145169, https://doi.org/10.1146/annurev-fluid-010816-060231.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mellado, J. P., B. Stevens, H. Schmidt, and N. Peters, 2009: Buoyancy reversal in cloud-top mixing layers. Quart. J. Roy. Meteor. Soc., 135, 963978, https://doi.org/10.1002/qj.417.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moeng, C.-H., P. P. Sullivan, and B. Stevens, 1999: Including radiative effects in an entrainment rate formula for buoyancy-driven PBLs. J. Atmos. Sci., 56, 10311049, https://doi.org/10.1175/1520-0469(1999)056<1031:IREIAE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nicholls, S., 1989: The structure of radiatively driven convection in stratocumulus. Quart. J. Roy. Meteor. Soc., 115, 487511, https://doi.org/10.1002/qj.49711548704.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oreopoulos, L., 2005: The impact of subsampling on MODIS level-3 statistics of cloud optical thickness and effective radius. IEEE Trans. Geosci. Remote Sens., 43, 366373, https://doi.org/10.1109/TGRS.2004.841247.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Paluch, I. R., and D. H. Lenschow, 1991: Stratiform cloud formation in the marine boundary layer. J. Atmos. Sci., 48, 21412158, https://doi.org/10.1175/1520-0469(1991)048<2141:SCFITM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qu, X., A. Hall, S. A. Klein, and P. M. Caldwell, 2015: The strength of the tropical inversion and its response to climate change in 18 CMIP5 models. Climate Dyn., 45, 375396, https://doi.org/10.1007/s00382-014-2441-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Randall, D. A., 1980: Conditional instability of the first kind upside-down. J. Atmos. Sci., 37, 125130, https://doi.org/10.1175/1520-0469(1980)037<0125:CIOTFK>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Randall, D. A., and Coauthors, 2007: Climate models and their evaluation. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 589–662.

  • Sandu, I., B. Stevens, and R. Pincus, 2010: On the transitions in marine boundary layer cloudiness. Atmos. Chem. Phys., 10, 23772391, https://doi.org/10.5194/acp-10-2377-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Siems, S. T., and C. S. Bretherton, 1992: A numerical investigation of cloud-top entrainment instability and related experiments. Quart. J. Roy. Meteor. Soc., 118, 787818, https://doi.org/10.1002/qj.49711850702.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., and T. J. Greenwald, 1991:The Earth’s radiation budget in relation to atmospheric hydrology: 2. Observations of cloud effects. J. Geophys. Res., 96, 15 32515 340, https://doi.org/10.1029/91JD00972.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stevens, D. E., and C. S. Bretherton, 1999: Effects of resolution on the simulation of stratocumulus entrainment. Quart. J. Roy. Meteor. Soc., 125, 425439, https://doi.org/10.1002/qj.49712555403.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vaughan, M., S. Young, D. Winker, K. Powell, A. Omar, Z. Liu, Y. Hu, and C. Hostetler, 2004: Fully automated analysis of space-based lidar data: An overview of the CALIPSO retrieval algorithms and data products. Laser Radar Techniques for Atmospheric Sensing, U. N. Singh, Ed., International Society for Optical Engineering (SPIE Proceedings, Vol. 5575), 16–30.

  • Wentz, F. J., and T. Meissner, 2004: AMSR-E/Aqua L2B global swath ocean products derived from Wentz algorithm (L3 LWP), version 2. National Snow and Ice Data Center, accessed 1 June 2017, www.remss.com/missions/amsr.

  • Wood, R., 2012: Stratocumulus clouds. Mon. Wea. Rev., 140, 23732423, https://doi.org/10.1175/MWR-D-11-00121.1.

  • Wood, R., and C. S. Bretherton, 2006: On the relationship between stratiform low cloud cover and lower-tropospheric stability. J. Climate, 19, 64256432, https://doi.org/10.1175/JCLI3988.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wyant, M. C., C. S. Bretherton, H. A. Rand, and D. E. Stevens, 1997: Numerical simulations and a conceptual model of the stratocumulus to trade cumulus transition. J. Atmos. Sci., 54, 168192, https://doi.org/10.1175/1520-0469(1997)054<0168:NSAACM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yamaguchi, T., and D. A. Randall, 2012: Cooling of entrained parcels in a large-eddy simulation. J. Atmos. Sci., 69, 11181136, https://doi.org/10.1175/JAS-D-11-080.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 35 35 35
PDF Downloads 5 5 5

The Competing Effects of Stability and Humidity on Subtropical Stratocumulus Entrainment and Cloud Evolution from a Lagrangian Perspective

View More View Less
  • 1 Department of Atmospheric Sciences, University of Washington, Seattle, Washington
Restricted access

Abstract

The evolution of subtropical stratocumulus clouds and the boundary layer is studied on daily time scales from the Lagrangian perspective, following the flow. Measures of humidity above the boundary layer and of inversion strength are obtained from reanalysis data, and their effects on the Lagrangian evolution of cloud cover and the boundary layer are compared. An analysis that disentangles these variables and tests their effects independently is developed. Increased inversion strength and increased humidity above the boundary layer lead to anomalously persistent cloud cover and slower Lagrangian deepening of the boundary layer. These parameters affect the stratocumulus boundary layer in different ways: inversion strength controls the buoyancy difference across the inversion, while humidity differences affect both the radiation balance and rate of cloud drop evaporation at cloud top. The relative strengths of the two effects of humidity are compared using two products: the entraining humidity in the layer directly above the inversion and the radiating humidity, which is the mean humidity in the column above the entraining humidity. Results show that the variability in the radiating humidity is the primary driver of Lagrangian boundary layer depth changes, but entraining humidity variation is mostly responsible for altering cloud lifetime.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Ryan Eastman, rmeast@atmos.washington.edu

Abstract

The evolution of subtropical stratocumulus clouds and the boundary layer is studied on daily time scales from the Lagrangian perspective, following the flow. Measures of humidity above the boundary layer and of inversion strength are obtained from reanalysis data, and their effects on the Lagrangian evolution of cloud cover and the boundary layer are compared. An analysis that disentangles these variables and tests their effects independently is developed. Increased inversion strength and increased humidity above the boundary layer lead to anomalously persistent cloud cover and slower Lagrangian deepening of the boundary layer. These parameters affect the stratocumulus boundary layer in different ways: inversion strength controls the buoyancy difference across the inversion, while humidity differences affect both the radiation balance and rate of cloud drop evaporation at cloud top. The relative strengths of the two effects of humidity are compared using two products: the entraining humidity in the layer directly above the inversion and the radiating humidity, which is the mean humidity in the column above the entraining humidity. Results show that the variability in the radiating humidity is the primary driver of Lagrangian boundary layer depth changes, but entraining humidity variation is mostly responsible for altering cloud lifetime.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Ryan Eastman, rmeast@atmos.washington.edu
Save