• Beheng, K. D., 1987: Microphysical properties of glaciating cumulus clouds: Comparison of measurements with a numerical simulation. Quart. J. Roy. Meteor. Soc., 113, 13771382, https://doi.org/10.1002/qj.49711347815.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Braham, R. R., 1964: What is the role of ice in summer rain-showers? J. Atmos. Sci., 21, 640645, https://doi.org/10.1175/1520-0469(1964)021<0640:WITROI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brownscombe, J. L., and N. S. C. Thorndike, 1968: Freezing and shattering of water droplets in free fall. Nature, 220, 687689, https://doi.org/10.1038/220687a0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chisnell, R. F., and J. Latham, 1974: A stochastic model of ice particle multiplication by drop splintering. Quart. J. Roy. Meteor. Soc., 100, 296308, https://doi.org/10.1002/qj.49710042504.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crosier, J., and Coauthors, 2011: Observations of ice multiplication in a weakly convective cell embedded in supercooled mid-level stratus. Atmos. Chem. Phys., 11, 257273, https://doi.org/10.5194/acp-11-257-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dye, J. E., W. P. Winn, J. J. Jones, and D. W. Breed, 1989: The electrification of New Mexico thunderstorms: 1. Relationship between precipitation development and the onset of electrification. J. Geophys. Res., 94, 86438656, https://doi.org/10.1029/JD094iD06p08643.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Field, P. R., and Coauthors, 2017: Secondary ice production: Current state of the science and recommendations for the future. Ice Formation and Evolution in Clouds and Precipitation: Measurement and Modeling Challenges, Meteor. Monogr., No. 58, Amer. Meteor. Soc., https://doi.org/10.1175/AMSMONOGRAPHS-D-16-0014.1.

    • Crossref
    • Export Citation
  • Hallett, J., and S. C. Mossop, 1974: Production of secondary ice particles during the riming process. Nature, 249, 2628, https://doi.org/10.1038/249026a0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harris-Hobbs, R. L., and W. A. Cooper, 1987: Field evidence supporting quantitative predictions of secondary ice production rates. J. Atmos. Sci., 44, 10711082, https://doi.org/10.1175/1520-0469(1987)044<1071:FESQPO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hobbs, P. V., and A. J. Alkezweeny, 1968: The fragmentation of freezing water droplets in free fall. J. Atmos. Sci., 25, 881888, https://doi.org/10.1175/1520-0469(1968)025<0881:TFOFWD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hobbs, P. V., and A. L. Rangno, 1985: Ice particle concentrations in clouds. J. Atmos. Sci., 42, 25232549, https://doi.org/10.1175/1520-0469(1985)042<2523:IPCIC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hobbs, P. V., and A. L. Rangno, 1990: Rapid development of high ice particle concentrations in small polar maritime cumuliform clouds. J. Atmos. Sci., 47, 27102722, https://doi.org/10.1175/1520-0469(1990)047<2710:RDOHIP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoffmann, N., A. Kiselev, D. Rzesanke, D. Duft, and T. Leisner, 2013: Experimental quantification of contact freezing in an electrodynamic balance. Atmos. Meas. Tech., 6, 23732382, https://doi.org/10.5194/amt-6-2373-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hogan, R. J., P. R. Field, A. J. Illingworth, R. J. Cotton, and T. W. Choularton, 2002: Properties of embedded convection in warm-frontal mixed-phase cloud from aircraft and polarimetric radar. Quart. J. Roy. Meteor. Soc., 128, 451476, https://doi.org/10.1256/003590002321042054.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, D. A., and J. Hallett, 1968: Freezing and shattering of supercooled water drops. Quart. J. Roy. Meteor. Soc., 94, 468482, https://doi.org/10.1002/qj.49709440204.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knight, C. A., and N. C. Knight, 1974: Drop freezing in clouds. J. Atmos. Sci., 31, 11741176, https://doi.org/10.1175/1520-0469(1974)031<1174:DFIC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knollenberg, R. G., 1976: Three new instruments for cloud physics measurements: The 2-D spectrometer, the Forward Scattering Spectrometer Probe, and the active scattering aerosol spectrometer. Preprints, Int. Cloud Physics Conf., Boulder, CO, Amer. Meteor. Soc., 554–561.

  • Koenig, L. R., 1963: The glaciating behavior of small cumulonimbus clouds. J. Atmos. Sci., 20, 2947, https://doi.org/10.1175/1520-0469(1963)020<0029:TGBOSC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kolomeychuk, R. J., D. C. McKay, and J. V. Iribarne, 1975: The fragmentation and electrification of freezing drops. J. Atmos. Sci., 32, 974979, https://doi.org/10.1175/1520-0469(1975)032<0974:TFAEOF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Korolev, A. V., M. P. Bailey, J. Hallett, and G. A. Isaac, 2004: Laboratory and in situ observation of deposition growth of frozen drops. J. Appl. Meteor., 43, 612622, https://doi.org/10.1175/1520-0450(2004)043<0612:LAISOO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Korolev, A. V., E. F. Emery, J. W. Strapp, S. G. Cober, G. A. Isaac, M. Wasey, and D. Marcotte, 2011: Small ice particles in tropospheric clouds: Fact or artifact? Airborne Icing Instrumentation Evaluation Experiment. Bull. Amer. Meteor. Soc., 92, 967973, https://doi.org/10.1175/2010BAMS3141.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lawson, R. P., S. Woods, and H. Morrison, 2015: The microphysics of ice and precipitation development in tropical cumulus clouds. J. Atmos. Sci., 72, 24292445, https://doi.org/10.1175/JAS-D-14-0274.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MacGorman, D. R., and W. D. Rust, 1998: The Electrical Nature of Storms. Oxford University Press, 422 pp.

  • Mossop, S. C., 1970: Concentrations of ice crystals in clouds. Bull. Amer. Meteor. Soc., 51, 474479, https://doi.org/10.1175/1520-0477(1970)051<0474:COICIC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mossop, S. C., 1985: The origin and concentration of ice crystals in clouds. Bull. Amer. Meteor. Soc., 66, 264273, https://doi.org/10.1175/1520-0477(1985)066<0264:TOACOI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mossop, S. C., R. E. Ruskin, and K. J. Heffernan, 1968: Glaciation of a cumulus at approximately −4C. J. Atmos. Sci., 25, 889899, https://doi.org/10.1175/1520-0469(1968)025<0889:GOACAA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mossop, S. C., A. Ono, and E. R. Wishart, 1970: Ice particles in maritime clouds near Tasmania. Quart. J. Roy. Meteor. Soc., 96, 487508, https://doi.org/10.1002/qj.49709640910.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mossop, S. C., R. E. Cottis, and B. M. Bartlett, 1972: Ice crystal concentrations in cumulus and stratocumulus clouds. Quart. J. Roy. Meteor. Soc., 98, 105123, https://doi.org/10.1002/qj.49709841509.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oraltay, R. G., and J. Hallett, 1989: Evaporation and melting of ice crystals: A laboratory study. Atmos. Res., 24, 169189, https://doi.org/10.1016/0169-8095(89)90044-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pander, T. J., 2015: Laboratory ice multiplication experiments in levitated microdroplets. Ph.D. dissertation, Heidelberg University, 136 pp.

  • Petrovic, J. J., 2003: Review: Mechanical properties of ice and snow. J. Mater. Sci., 38, 16, https://doi.org/10.1023/A:1021134128038.

  • Phillips, V. T. J., T. W. Choularton, A. J. Illingworth, R. J. Hogan, and P. R. Field, 2003: Simulations of the glaciation of a frontal mixed-phase cloud with the explicit microphysics model. Quart. J. Roy. Meteor. Soc., 129, 13511371, https://doi.org/10.1256/qj.02.100.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pruppacher, H. R., and R. J. Schlamp, 1975: A wind tunnel investigation on ice multiplication by freezing of waterdrops falling at terminal velocity in air. J. Geophys. Res., 80, 380386, https://doi.org/10.1029/JC080i003p00380.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pruppacher, H. R., and J. D. Klett, 1997: Microphysics of Clouds and Precipitation. Vol. 18. Kluwer Academic, 954 pp.

  • Rangno, A. L., 2008: Fragmentation of freezing drops in shallow maritime frontal clouds. J. Atmos. Sci., 65, 14551466, https://doi.org/10.1175/2007JAS2295.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rangno, A. L., and P. V. Hobbs, 1991: Ice particle concentrations and precipitation development in small polar maritime cumuliform clouds. Quart. J. Roy. Meteor. Soc., 117, 207241, https://doi.org/10.1002/qj.49711749710.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rangno, A. L., and P. V. Hobbs, 1994: Ice particle concentrations and precipitation development in small continental cumuliform clouds. Quart. J. Roy. Meteor. Soc., 120, 573601, https://doi.org/10.1002/qj.49712051705.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rangno, A. L., and P. V. Hobbs, 2001: Ice particles in stratiform clouds in the Arctic and possible mechanisms for the production of high ice concentrations. J. Geophys. Res., 106, 15 06515 075, https://doi.org/10.1029/2000JD900286.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rzesanke, D., J. Nadolny, D. Duft, R. Muller, A. Kiselev, and T. Leisner, 2012: On the role of surface charges for homogeneous freezing of supercooled water microdroplets. Phys. Chem. Chem. Phys., 14, 93599363, https://doi.org/10.1039/c2cp23653b.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stith, J. L., J. A. Haggerty, A. Heymsfield, and C. A. Grainger, 2004: Microphysical characteristics of tropical updrafts in clean conditions. J. Appl. Meteor., 43, 779794, https://doi.org/10.1175/2104.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sullivan, S. C., C. Hoose, and A. Nenes, 2017: Investigating the contribution of secondary ice production to in-cloud ice crystal numbers. J. Geophys. Res. Atmos., 122, 93919412, https://doi.org/10.1002/2017JD026546.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sullivan, S. C., C. Hoose, A. Kiselev, T. Leisner, and A. Nenes, 2018: Initiation of secondary ice production in clouds. Atmos. Chem. Phys., 18, 15931610, https://doi.org/10.5194/acp-18-1593-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, J., P. A. Ariya, H. G. Leighton, and M. K. Yau, 2010: Mystery of ice multiplication in warm-based precipitating shallow cumulus clouds. Geophys. Res. Lett., 37, L10802, https://doi.org/10.1029/2010GL042440.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Takahashi, C., 1975: Deformations of frozen water drops and their frequencies. J. Meteor. Soc. Japan, 53, 402411, https://doi.org/10.2151/jmsj1965.53.6_402.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Takahashi, C., and A. Yamashita, 1970: Shattering of frozen water drops in a supercooled cloud. J. Meteor. Soc. Japan, 48, 373376, https://doi.org/10.2151/jmsj1965.48.4_373.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, J. W., and Coauthors, 2016: Observations of cloud microphysics and ice formation during COPE. Atmos. Chem. Phys., 16, 799826, https://doi.org/10.5194/acp-16-799-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Turner, J. S., 1955: The salinity of rainfall as a function of drop size. Quart. J. Roy. Meteor. Soc., 81, 418429, https://doi.org/10.1002/qj.49708134911.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vardiman, L., 1978: The generation of secondary ice particles in clouds by crystal–crystal collision. J. Atmos. Sci., 35, 21682180, https://doi.org/10.1175/1520-0469(1978)035<2168:TGOSIP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wildeman, S., S. Sterl, C. Sun, and D. Lohse, 2017: Fast dynamics of water droplets freezing from the outside in. Phys. Rev. Lett., 118, 084101, https://doi.org/10.1103/PhysRevLett.118.084101.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yano, J.-I., V. T. J. Phillips, and V. Kanawade, 2016: Explosive ice multiplication by mechanical break-up in ice–ice collisions: A dynamical system-based study. Quart. J. Roy. Meteor. Soc., 142, 867879, https://doi.org/10.1002/qj.2687.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 25 25 24
PDF Downloads 15 15 15

Secondary Ice Formation during Freezing of Levitated Droplets

View More View Less
  • 1 Atmospheric Aerosol Research, Institute for Meteorology and Climate Research, Karlsruhe Institute of Technology, Karlsruhe, Germany
  • | 2 Atmospheric Aerosol Research, Institute for Meteorology and Climate Research, Karlsruhe Institute of Technology, Karlsruhe, and Institut für Umweltphysik, Universität Heidelberg, Heidelberg, Germany
Restricted access

Abstract

The formation of secondary ice in clouds, that is, ice particles that are created at temperatures above the limit for homogeneous freezing without the direct involvement of a heterogeneous ice nucleus, is one of the longest-standing puzzles in cloud physics. Here, we present comprehensive laboratory investigations on the formation of small ice particles upon the freezing of drizzle-sized cloud droplets levitated in an electrodynamic balance. Four different categories of secondary ice formation (bubble bursting, jetting, cracking, and breakup) could be detected, and their respective frequencies of occurrence as a function of temperature and droplet size are given. We find that bubble bursting occurs more often than droplet splitting. While we do not observe the shattering of droplets into many large fragments, we find that the average number of small secondary ice particles released during freezing is strongly dependent on droplet size and may well exceed unity for droplets larger than 300 μm in diameter. This leaves droplet fragmentation as an important secondary ice process effective at temperatures around −10°C in clouds where large drizzle droplets are present.

Current affiliation: Institute for Atmospheric and Climate Science, ETH Zürich, Zurich, Switzerland.

Current affiliation: Forschung Kältetechnik, Eckelmann AG, Mainz, Germany.

Current affiliation: GEOMAR Helmholtz Center for Ocean Research, Kiel, Germany.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JAS-D-18-0052.s1.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Thomas Leisner, thomas.leisner@kit.edu

Abstract

The formation of secondary ice in clouds, that is, ice particles that are created at temperatures above the limit for homogeneous freezing without the direct involvement of a heterogeneous ice nucleus, is one of the longest-standing puzzles in cloud physics. Here, we present comprehensive laboratory investigations on the formation of small ice particles upon the freezing of drizzle-sized cloud droplets levitated in an electrodynamic balance. Four different categories of secondary ice formation (bubble bursting, jetting, cracking, and breakup) could be detected, and their respective frequencies of occurrence as a function of temperature and droplet size are given. We find that bubble bursting occurs more often than droplet splitting. While we do not observe the shattering of droplets into many large fragments, we find that the average number of small secondary ice particles released during freezing is strongly dependent on droplet size and may well exceed unity for droplets larger than 300 μm in diameter. This leaves droplet fragmentation as an important secondary ice process effective at temperatures around −10°C in clouds where large drizzle droplets are present.

Current affiliation: Institute for Atmospheric and Climate Science, ETH Zürich, Zurich, Switzerland.

Current affiliation: Forschung Kältetechnik, Eckelmann AG, Mainz, Germany.

Current affiliation: GEOMAR Helmholtz Center for Ocean Research, Kiel, Germany.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JAS-D-18-0052.s1.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Thomas Leisner, thomas.leisner@kit.edu

Supplementary Materials

    • Supplemental Materials (ZIP 4.62 MB)
Save