• Barnes, H. C., J. P. Zagrodnik, L. A. McMurdie, A. K. Rowe, and R. A. Houze Jr., 2018: Kelvin–Helmholtz waves in precipitating stratiform clouds of midlatitude baroclinic cyclones. J. Atmos. Sci., https://doi.org/10.1175/JAS-D-17-0365.1, in press.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Browning, K. A., J. H. Marsham, B. A. White, and J. C. Nicol, 2012: A case study of a large patch of billows surmounted by elevated convection. Quart. J. Roy. Meteor. Soc., 138, 17641773, https://doi.org/10.1002/qj.1908.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Droegemeier, K. K., and R. B. Wilhelmson, 1987: Numerical simulation of thunderstorm outflow dynamics. Part I: Outflow sensitivity experiments and turbulence dynamics. J. Atmos. Sci., 44, 11801210, https://doi.org/10.1175/1520-0469(1987)044<1180:NSOTOD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Efimov, V. V., 2017: Numerical simulation of breeze circulation over the Crimean Peninsula. Atmos. Oceanic Phys., 53, 8494, https://doi.org/10.1134/S0001433817010042.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Friedrich, K., D. E. Kingsmill, C. Flamant, H. V. Murphy, and R. M. Wakimoto, 2008: Kinematic and moisture characteristics of a nonprecipitating cold front observed during IHOP. Part II: Alongfront structures. Mon. Wea. Rev., 136, 37963797, https://doi.org/10.1175/2008MWR2360.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fritts, D. C., 1979: The excitation of radiating waves and Kelvin-Helmholtz instabilities by the gravity wave-critical level interaction. J. Atmos. Sci., 36, 1223, https://doi.org/10.1175/1520-0469(1979)036<0012:TEORWA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fritts, D. C., T. L. Palmer, Ø. Andreassen, and I. Lie, 1996: Evolution and breakdown of Kelvin–Helmholtz billows in stratified compressible flows. Part I: Comparison of two- and three-dimensional flows. J. Atmos. Sci., 53, 31733191, https://doi.org/10.1175/1520-0469(1996)053<3173:EABOKB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Geerts, B., and Q. Miao, 2010: Vertically pointing airborne Doppler radar observations of Kelvin–Helmholtz billows. Mon. Wea. Rev., 138, 982986, https://doi.org/10.1175/2009MWR3212.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grasso, L., D. T. Lindsey, K. S. Lim, A. Clark, D. Bikos, and S. R. Dembek, 2014: Evaluation of and suggested improvements to the WSM6 microphysics in WRF-ARW using synthetic and observed GOES-13 imagery. Mon. Wea. Rev., 142, 36353650, https://doi.org/10.1175/MWR-D-14-00005.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grell, G. A., and S. R. Freitas, 2014: A scale and aerosol aware stochastic convective parameterization for weather and air quality modeling. Atmos. Chem. Phys., 14, 52335250, https://doi.org/10.5194/acp-14-5233-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Han, M., S. A. Braun, T. Matsui, and C. R. Williams, 2013: Evaluation of cloud microphysics schemes in simulations of a winter storm using radar and radiometer measurements. J. Geophys. Res. Atmos., 118, 14011419, https://doi.org/10.1002/jgrd.50115.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., and J.-O. J. Lim, 2006: The WRF single-moment 6-class microphysics scheme (WSM6). J. Korean Meteor. Soc., 42, 129151.

  • Hong, S.-Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 23182341, https://doi.org/10.1175/MWR3199.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houser, J. L., and H. B. Bluestein, 2011: Polarimetric Doppler radar observations of Kelvin–Helmholtz waves in a winter storm. J. Atmos. Sci., 68, 16761702, https://doi.org/10.1175/2011JAS3566.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houze, R. A. Jr., and S. Medina, 2005: Turbulence as a mechanism for orographic precipitation enhancement. J. Atmos. Sci., 62, 35993623, https://doi.org/10.1175/JAS3555.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houze, R. A. Jr., and Coauthors, 2017: The Olympic Mountains Experiment (OLYMPEX). Bull. Amer. Meteor. Soc., 98, 21672188, https://doi.org/10.1175/BAMS-D-16-0182.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Iacono, M. J., J. S. Delamere, E. J. Mlawer, M. W. Shephard, S. A. Clough, and W. D. Collins, 2008: Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res., 113, D13103, https://doi.org/10.1029/2008JD009944.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kudo, A., 2013: The generation of turbulence below midlevel cloud bases: The effect of cooling due to sublimation of snow. J. Appl. Meteor. Climatol., 52, 819833, https://doi.org/10.1175/JAMC-D-12-0232.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lalas, D. P., and F. Einaudi, 1974: On the correct use of the wet adiabatic lapse rate in the stability criteria of a saturated atmosphere. J. Appl. Meteor., 13, 318324, https://doi.org/10.1175/1520-0450(1974)013<0318:OTCUOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mahalov, A., M. Moustaoui, and V. Grubišić, 2011: A numerical study of mountain waves in the upper troposphere and lower stratosphere. Atmos. Chem. Phys., 11, 51235139, https://doi.org/10.5194/acp-11-5123-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Medina, S., and R. A. Houze Jr., 2015: Small-scale precipitation elements in midlatitude cyclones crossing the California Sierra Nevada. Mon. Wea. Rev., 143, 28422870, https://doi.org/10.1175/MWR-D-14-00124.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Medina, S., and R. A. Houze Jr., 2016: Kelvin–Helmholtz waves in extratropical cyclones passing over mountain ranges. Quart. J. Roy. Meteor. Soc., 142, 13111319, https://doi.org/10.1002/qj.2734.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mesinger, F., and Coauthors, 2006: North American Regional Reanalysis. Bull. Amer. Meteor. Soc., 87, 343360, https://doi.org/10.1175/BAMS-87-3-343.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miles, J. W., and L. N. Howard, 1964: Note on a heterogeneous shear flow. J. Fluid Mech., 20, 331336, https://doi.org/10.1017/S0022112064001252.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morrison, H., and J. Milbrandt, 2011: Comparison of two-moment bulk microphysics schemes in idealized supercell thunderstorm simulations. Mon. Wea. Rev., 139, 11031130, https://doi.org/10.1175/2010MWR3433.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Na, J. S., E. K. Jin, and J. S. Lee, 2014: Investigation of Kelvin–Helmholtz instability in the stable boundary layer using large eddy simulation. J. Geophys. Res. Atmos., 119, 78767888, https://doi.org/10.1002/2013JD021414.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nakanishi, M., and H. Niino, 2012: Large-eddy simulation of roll vortices in a hurricane boundary layer. J. Atmos. Sci., 69, 35583575, https://doi.org/10.1175/JAS-D-11-0237.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nakanishi, M., R. Shibuya, J. Ito, and H. Niino, 2014: Large-eddy simulation of a residual layer: Low-level jet, convective rolls, and Kelvin–Helmholtz instability. J. Atmos. Sci., 71, 44734491, https://doi.org/10.1175/JAS-D-13-0402.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Niu, G.-Y., and Coauthors, 2011: The community Noah land surface model with multiparameterization options (Noah‐MP): 1. Model description and evaluation with local‐scale measurements. J. Geophys. Res., 116, D12109, https://doi.org/10.1029/2010JD015139.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Petre, J. M., and J. Verlinde, 2004: Cloud radar observations of Kelvin–Helmholtz instability in a Florida anvil. Mon. Wea. Rev., 132, 25202523, https://doi.org/10.1175/1520-0493(2004)132<2520:CROOKI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Samelson, R. M., and E. D. Skyllingstad, 2016: Frontogenesis and turbulence: A numerical simulation. J. Atmos. Sci., 73, 50255040, https://doi.org/10.1175/JAS-D-16-0145.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sauer, J. A., D. Muñoz-Esparza, J. Canfield, K. Costigan, R. R. Linn, and Y.-J. Kim, 2016: A large-eddy simulation study of atmospheric boundary layer influence on stratified flows over terrain. J. Atmos. Sci., 73, 26152632, https://doi.org/10.1175/JAS-D-15-0282.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sha, W., T. Kawamura, and H. Ueda, 1991: A numerical study on sea/land breezes as a gravity current: Kelvin–Helmholtz billows and inland penetration of the sea-breeze front. J. Atmos. Sci., 48, 16491665, https://doi.org/10.1175/1520-0469(1991)048<1649:ANSOSB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., 2004: Evaluating mesoscale NWP models using kinetic energy spectra. Mon. Wea. Rev., 132, 30193032, https://doi.org/10.1175/MWR2830.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., J. B. Klemp, J. Dudhia, D. O. Gill, D. M. Barker, W. Wang, and J. G. Powers, 2005: A description of the Advanced Research WRF version 2. NCAR Tech. Note NCAR/TN-468+STR, 88 pp., https://doi.org/10.5065/D6DZ069T.

    • Crossref
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A Description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp., https://doi.org/10.5065/D68S4MVH.

    • Crossref
    • Export Citation
  • Skamarock, W. C., S. Park, J. B. Klemp, and C. Snyder, 2014: Atmospheric kinetic energy spectra from global high-resolution nonhydrostatic simulations. J. Atmos. Sci., 71, 43694381, https://doi.org/10.1175/JAS-D-14-0114.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smyth, W. D., 2004: Kelvin–Helmholtz billow evolution from a localized source. Quart. J. Roy. Meteor. Soc., 130, 27532766, https://doi.org/10.1256/qj.03.226.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sykes, R. I., and W. S. Lewellen, 1982: A numerical study of breaking Kelvin-Helmholtz billows using a Reynolds-stress turbulence closure. J. Atmos. Sci., 39, 15061520, https://doi.org/10.1175/1520-0469(1982)039<1506:ANSOBK>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, G., P. R. Field, R. M. Rasmussen, and W. D. Hall, 2008: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: Implementation of a new snow parameterization. Mon. Wea. Rev., 136, 50955115, https://doi.org/10.1175/2008MWR2387.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, W. T., T. Holt, and J. Pullen, 2007: Investigation of a sea breeze front in an urban environment. Quart. J. Roy. Meteor. Soc., 133, 579594, https://doi.org/10.1002/qj.52.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trier, S. B., R. Sharman, and T. P. Lane, 2012: Influences of moist convection on a cold-season outbreak of clear-air turbulence (CAT). Mon. Wea. Rev., 140, 24772496, https://doi.org/10.1175/MWR-D-11-00353.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wakimoto, R. M., W. Blier, and C. Liu, 1992: The frontal structures of an explosive oceanic cyclone: Airborne radar observation of ERICA IOP 4. Mon. Wea. Rev., 120, 11351155, https://doi.org/10.1175/1520-0493(1992)120<1135:TFSOAE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weckwerth, T. M., and R. M. Wakimoto, 1992: The initiation and organization of convective cells atop a cold-air outflow boundary. Mon. Wea. Rev., 120, 21692187, https://doi.org/10.1175/1520-0493(1992)120<2169:TIAOOC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, B., and F. K. Chow, 2013: Nighttime turbulent events in a steep valley: A nested large-eddy simulation study. J. Atmos. Sci., 70, 32623276, https://doi.org/10.1175/JAS-D-13-02.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 39 39 39
PDF Downloads 2 2 2

Simulated Kelvin–Helmholtz Waves over Terrain and Their Microphysical Implications

View More View Less
  • 1 Department of Atmospheric Sciences, University of Washington, Seattle, Washington
  • | 2 China Meteorological Administration Training Center, Beijing, China
Restricted access

Abstract

Two Kelvin–Helmholtz (KH) wave events over western Washington State were simulated and evaluated using observations from the Olympic Mountains Experiment (OLYMPEX) field campaign. The events, 12 and 17 December 2015, were simulated realistically by the WRF-ARW Model, duplicating the mesoscale environment, location, and structure of embedded KH waves, which had observed wavelengths of approximately 5 km. In simulations of both cases, waves developed from instability within an intense shear layer, caused by low-level easterly flow surmounted by westerly winds aloft. The low-level easterlies resulted from blocking by the Olympic Mountains in the 12 December case, while in the 17 December event, the easterly flow was produced by the synoptic environment. Simulated microphysics were evaluated for both cases using OLYMPEX observations. When the KH waves were within the melting level, simulated microphysical fields, such as hydrometeor mixing ratios, evinced considerable oscillatory behavior. In contrast, when waves were located below the melting level, the microphysical response was attenuated. Turning off the model’s microphysics scheme and latent heating resulted in weakened KH wave activity, while removing the Olympic Mountains eliminated KH waves in the 12 December event but not the 17 December case. Finally, the impact of several microphysics parameterizations on KH activity was evaluated for both events.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Robert Conrick, rconrick@uw.edu

Abstract

Two Kelvin–Helmholtz (KH) wave events over western Washington State were simulated and evaluated using observations from the Olympic Mountains Experiment (OLYMPEX) field campaign. The events, 12 and 17 December 2015, were simulated realistically by the WRF-ARW Model, duplicating the mesoscale environment, location, and structure of embedded KH waves, which had observed wavelengths of approximately 5 km. In simulations of both cases, waves developed from instability within an intense shear layer, caused by low-level easterly flow surmounted by westerly winds aloft. The low-level easterlies resulted from blocking by the Olympic Mountains in the 12 December case, while in the 17 December event, the easterly flow was produced by the synoptic environment. Simulated microphysics were evaluated for both cases using OLYMPEX observations. When the KH waves were within the melting level, simulated microphysical fields, such as hydrometeor mixing ratios, evinced considerable oscillatory behavior. In contrast, when waves were located below the melting level, the microphysical response was attenuated. Turning off the model’s microphysics scheme and latent heating resulted in weakened KH wave activity, while removing the Olympic Mountains eliminated KH waves in the 12 December event but not the 17 December case. Finally, the impact of several microphysics parameterizations on KH activity was evaluated for both events.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Robert Conrick, rconrick@uw.edu
Save