• Barcilon, A., and C. H. Bishop, 1998: Nonmodal development of baroclinic waves undergoing horizontal shear deformation. J. Atmos. Sci., 55, 35833597, https://doi.org/10.1175/1520-0469(1998)055<3583:NDOBWU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Borges, M. D., and D. L. Hartmann, 1992: Barotropic instability and optimal perturbations of observed nonzonal flows. J. Atmos. Sci., 49, 335354, https://doi.org/10.1175/1520-0469(1992)049<0335:BIAOPO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, E. K., 1992: Resonating neutral modes of the Eady model. J. Atmos. Sci., 49, 24522463, https://doi.org/10.1175/1520-0469(1992)049<2452:RNMOTE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cushman-Roisin, B., and J.-M. Beckers, 2011: Introduction to Geophysical Fluid Dynamics: Physical and Numerical Aspects. Vol. 101. Academic Press, 875 pp.

    • Crossref
    • Export Citation
  • Davies, H., and C. Bishop, 1994: Eady edge waves and rapid development. J. Atmos. Sci., 51, 19301946, https://doi.org/10.1175/1520-0469(1994)051<1930:EEWARD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de Vries, H., and J. D. Opsteegh, 2007: Resonance in optimal perturbation evolution. Part I: Two-layer Eady model. J. Atmos. Sci., 64, 673694, https://doi.org/10.1175/JAS3867.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de Vries, H., J. Methven, T. H. A. Frame, and B. J. Hoskins, 2009: An interpretation of baroclinic initial value problems: Results for simple basic states with nonzero interior PV gradients. J. Atmos. Sci., 66, 864882, https://doi.org/10.1175/2008JAS2774.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Diaconescu, E. P., and R. Laprise, 2012: Singular vectors in atmospheric sciences: A review. Earth-Sci. Rev., 113, 161175, https://doi.org/10.1016/j.earscirev.2012.05.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dirren, S., and H. C. Davies, 2004: Combined dynamics of boundary and interior perturbations in the Eady setting. J. Atmos. Sci., 61, 15491565, https://doi.org/10.1175/1520-0469(2004)061<1549:CDOBAI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eady, E. T., 1949: Long waves and cyclone waves. Tellus, 1 (3), 3352, https://doi.org/10.3402/tellusa.v1i3.8507.

  • Farrell, B. F., 1982: The initial growth of disturbances in a baroclinic flow. J. Atmos. Sci., 39, 16631686, https://doi.org/10.1175/1520-0469(1982)039<1663:TIGODI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Farrell, B. F., 1984: Modal and non-modal baroclinic waves. J. Atmos. Sci., 41, 668673, https://doi.org/10.1175/1520-0469(1984)041<0668:MANMBW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Farrell, B. F., 1988: Optimal excitation of neutral Rossby waves. J. Atmos. Sci., 45, 163172, https://doi.org/10.1175/1520-0469(1988)045<0163:OEONRW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Farrell, B. F., 1989: Optimal excitation of baroclinic waves. J. Atmos. Sci., 46, 11931206, https://doi.org/10.1175/1520-0469(1989)046<1193:OEOBW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Farrell, B. F., and P. J. Ioannou, 1996: Generalized stability theory. Part I: Autonomous operators. J. Atmos. Sci., 53, 20252040, https://doi.org/10.1175/1520-0469(1996)053<2025:GSTPIA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Faulwetter, R., 2006: Optimal growth of Eady edge waves. Meteor. Z., 15, 423437, https://doi.org/10.1127/0941-2948/2006/0142.

  • Fischer, C., 1998: Linear amplification and error growth in the 2D Eady problem with uniform potential vorticity. J. Atmos. Sci., 55, 33633380, https://doi.org/10.1175/1520-0469(1998)055<3363:LAAEGI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heifetz, E., and J. Methven, 2005: Relating optimal growth to counterpropagating Rossby waves in shear instability. Phys. Fluids, 17, 064107, https://doi.org/10.1063/1.1937064.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heifetz, E., C. Bishop, and P. Alpert, 1999: Counter-propagating Rossby waves in the barotropic Rayleigh model of shear instability. Quart. J. Roy. Meteor. Soc., 125, 28352853, https://doi.org/10.1002/qj.49712556004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heifetz, E., C. Bishop, B. Hoskins, and J. Methven, 2004a: The counter-propagating Rossby-wave perspective on baroclinic instability. I: Mathematical basis. Quart. J. Roy. Meteor. Soc., 130, 211231, https://doi.org/10.1002/qj.200413059610.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heifetz, E., J. Methven, B. Hoskins, and C. Bishop, 2004b: The counter-propagating Rossby-wave perspective on baroclinic instability. II: Application to the Charney model. Quart. J. Roy. Meteor. Soc., 130, 233258, https://doi.org/10.1256/qj.02.185.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jenkner, J., and M. Ehrendorfer, 2006: Resonant continuum modes in the Eady model with rigid lid. J. Atmos. Sci., 63, 765773, https://doi.org/10.1175/JAS3649.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalashnik, M. V., 2009: Linear dynamics of Eady waves in the presence of horizontal shear. Izv. Atmos. Oceanic Phys., 45, 714722, https://doi.org/10.1134/S0001433809060048.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalashnik, M. V., 2015: Resonant and quasi-resonant excitation of baroclinic waves in the Eady model. Izv. Atmos. Oceanic Phys., 51, 576584, https://doi.org/10.1134/S0001433815060080.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalashnik, M. V., and O. Chkhetiani, 2017: Generation of gravity waves by singular potential vorticity disturbances in shear flows. J. Atmos. Sci., 74, 293308, https://doi.org/10.1175/JAS-D-16-0134.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leutbecher, M., 2007: On the representation of initial uncertainties with multiple sets of singular vectors optimized for different criteria. Quart. J. Roy. Meteor. Soc., 133, 20452056, https://doi.org/10.1002/qj.174.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lindzen, R. A., 1990: Dynamics in Atmospheric Physics. Cambridge University Press, 310 pp., https://doi.org/10.1017/cbo9780511608285.

    • Crossref
    • Export Citation
  • Mak, M., 2011: Atmospheric Dynamics. Cambridge University Press, 486 pp., https://doi.org/10.1017/cbo9780511762031.

    • Crossref
    • Export Citation
  • Mallios, C., and N. A. Bakas, 2017: Generalized stability of a shear flow with a free surface with respect to three-dimensional perturbations. Phys. Rev. Fluids, 2, 023901, https://doi.org/10.1103/PhysRevFluids.2.023901.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McWilliams, J. C., 2011: Fundamentals of Geophysical Fluid Dynamics. Cambridge University Press, 272 pp.

  • Morgan, M. C., 2001: A potential vorticity and wave activity diagnosis of optimal perturbation evolution. J. Atmos. Sci., 58, 25182544, https://doi.org/10.1175/1520-0469(2001)058<2518:APVAWA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morgan, M. C., and C.-C. Chen, 2002: Diagnosis of optimal perturbation evolution in the Eady model. J. Atmos. Sci., 59, 169185, https://doi.org/10.1175/1520-0469(2002)059<0169:DOOPEI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mukougawa, H., and T. Ikeda, 1994: Optimal excitation of baroclinic waves in the Eady model. J. Meteor. Soc. Japan, 72, 499513, https://doi.org/10.2151/jmsj1965.72.4.499.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pedlosky, J., 1987: Geophysical Fluid Dynamics. Springer-Verlag, 710 pp., https://doi.org/10.1007/978-1-4612-4650-3.

    • Crossref
    • Export Citation
  • Pierrehumbert, R., and K. Swanson, 1995: Baroclinic instability. Annu. Rev. Fluid Mech., 27, 419467, https://doi.org/10.1146/annurev.fl.27.010195.002223.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmid, P. J., and D. S. Henningson, 2012: Stability and Transition in Shear Flows. Vol. 142. Springer Science and Business Media, 558 pp., https://doi.org/10.1007/978-1-4613-0185-1.

    • Crossref
    • Export Citation
  • Thorncroft, C. D., and B. J. Hoskins, 1990: Frontal cyclogenesis. J. Atmos. Sci., 47, 23172336, https://doi.org/10.1175/1520-0469(1990)047<2317:FC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Timofeev, A. V., 1971: Oscillations of inhomogeneous flows of plasma and liquids. Phys.-Usp., 13, 632646, https://doi.org/10.1070/PU1971v013n05ABEH004220.

    • Search Google Scholar
    • Export Citation
  • Trefethen, L. N., A. Trefethen, S. C. Reddy, and T. A. Driscoll, 1993: Hydrodynamic stability without eigenvalues. Science, 261, 578584, https://doi.org/10.1126/science.261.5121.578.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Van Kampen, N. G., 1955: On the theory of stationary waves in plasmas. Physica, 21, 949963, https://doi.org/10.1016/S0031-8914(55)93068-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 37 37 37
PDF Downloads 2 2 2

An Analytical Approach to the Determination of Optimal Perturbations in the Eady Model

View More View Less
  • 1 A. M. Obukhov Institute of Atmospheric Physics, Russian Academy of Sciences, Moscow, and Institute of Experimental Meteorology, Scientific and Production Association “Typhoon,” Obninsk, Russia
  • | 2 A. M. Obukhov Institute of Atmospheric Physics, Russian Academy of Sciences, Moscow, Russia
Restricted access

Abstract

Within the framework of the baroclinic instability Eady model, an analytical approach to the determination of optimal perturbations with a maximum of the energy growth rate or the ratio of the final and initial energies is considered. This approach is based on the energy balance equation and explicit expressions for the energy functionals resulting from the perturbation representation by means of the superposition of the edge Rossby waves (ERWs). The corresponding expressions are functions of the parameters of the initial perturbation, and the determination of optimal parameters reduces to the study of these functions on an extremum. For perturbations with zero potential vorticity (PV), the amplitudes of the initial buoyancy distributions at the boundaries of the atmospheric layer and the phase shift between these distributions serve as parameters. Analytical formulas are obtained for the optimal phase shift and the maximum of the energy ratio, which determine their dependence on the wavenumber and optimization time. It is also shown that the optimal perturbations always have equal boundary amplitudes. The parameters of the optimal perturbations are compared with the parameters of the growing normal modes. It is established that there exists only one exponentially growing normal mode, which is the optimal perturbation. Along with the instability, the ERWs can be excited by their interaction with the initial vortex perturbations (PV ≠ 0). The optimal regime of ERWs excitation by the initial singular distribution of PV is investigated.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Otto G. Chkhetiani, ochkheti@gmail.com

Abstract

Within the framework of the baroclinic instability Eady model, an analytical approach to the determination of optimal perturbations with a maximum of the energy growth rate or the ratio of the final and initial energies is considered. This approach is based on the energy balance equation and explicit expressions for the energy functionals resulting from the perturbation representation by means of the superposition of the edge Rossby waves (ERWs). The corresponding expressions are functions of the parameters of the initial perturbation, and the determination of optimal parameters reduces to the study of these functions on an extremum. For perturbations with zero potential vorticity (PV), the amplitudes of the initial buoyancy distributions at the boundaries of the atmospheric layer and the phase shift between these distributions serve as parameters. Analytical formulas are obtained for the optimal phase shift and the maximum of the energy ratio, which determine their dependence on the wavenumber and optimization time. It is also shown that the optimal perturbations always have equal boundary amplitudes. The parameters of the optimal perturbations are compared with the parameters of the growing normal modes. It is established that there exists only one exponentially growing normal mode, which is the optimal perturbation. Along with the instability, the ERWs can be excited by their interaction with the initial vortex perturbations (PV ≠ 0). The optimal regime of ERWs excitation by the initial singular distribution of PV is investigated.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Otto G. Chkhetiani, ochkheti@gmail.com
Save