Axisymmetric Balance Dynamics of Tropical Cyclone Intensification and Its Breakdown Revisited

Roger K. Smith Meteorological Institute, Ludwig-Maximilians University of Munich, Munich, Germany

Search for other papers by Roger K. Smith in
Current site
Google Scholar
PubMed
Close
,
Michael T. Montgomery Department of Meteorology, Naval Postgraduate School, Monterey, California

Search for other papers by Michael T. Montgomery in
Current site
Google Scholar
PubMed
Close
, and
Hai Bui Hanoi University of Science, Vienam, National University, Hanoi, Vietnam

Search for other papers by Hai Bui in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This paper revisits the evolution of an idealized tropical cyclone–like vortex forced by a prescribed distribution of diabatic heating in the context of both inviscid and frictional axisymmetric balance dynamics. Prognostic solutions are presented for a range of heating distributions, which, in most cases, are allowed to contract as the vortex contracts and intensifies. Interest is focused on the kinematic structure and evolution of the secondary circulation in physical space and on the development of regions of symmetric and static instability. The solutions are prolonged beyond the onset of unstable regions by regularizing the Sawyer–Eliassen equation in these regions, but for reasons discussed, the model ultimately breaks down. The intensification rate of the vortex is essentially constant up to the time when regions of instability ensue. This result is in contrast to previous suggestions that the rate should increase as the vortex intensifies because the heating becomes progressively more “efficient” when the local inertial stability increases. The solutions provide a context for reexamining the classical axisymmetric paradigm for tropical cyclone intensification in the light of another widely invoked intensification paradigm by Emanuel, which postulates that the air in the eyewall flows upward and outward along sloping absolute angular momentum (M) surfaces after it exits the frictional boundary layer. The conundrum is that the classical mechanism for spinup requires the air above the boundary layer to move inward while materially conserving M. Insight provided by the balance solutions helps to refine ideas for resolving this conundrum.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Additional affiliation: Geophysical Institute, University of Bergen, Bergen, Norway.

Corresponding author: Prof. Roger K. Smith, roger.smith@lmu.de

Abstract

This paper revisits the evolution of an idealized tropical cyclone–like vortex forced by a prescribed distribution of diabatic heating in the context of both inviscid and frictional axisymmetric balance dynamics. Prognostic solutions are presented for a range of heating distributions, which, in most cases, are allowed to contract as the vortex contracts and intensifies. Interest is focused on the kinematic structure and evolution of the secondary circulation in physical space and on the development of regions of symmetric and static instability. The solutions are prolonged beyond the onset of unstable regions by regularizing the Sawyer–Eliassen equation in these regions, but for reasons discussed, the model ultimately breaks down. The intensification rate of the vortex is essentially constant up to the time when regions of instability ensue. This result is in contrast to previous suggestions that the rate should increase as the vortex intensifies because the heating becomes progressively more “efficient” when the local inertial stability increases. The solutions provide a context for reexamining the classical axisymmetric paradigm for tropical cyclone intensification in the light of another widely invoked intensification paradigm by Emanuel, which postulates that the air in the eyewall flows upward and outward along sloping absolute angular momentum (M) surfaces after it exits the frictional boundary layer. The conundrum is that the classical mechanism for spinup requires the air above the boundary layer to move inward while materially conserving M. Insight provided by the balance solutions helps to refine ideas for resolving this conundrum.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Additional affiliation: Geophysical Institute, University of Bergen, Bergen, Norway.

Corresponding author: Prof. Roger K. Smith, roger.smith@lmu.de
Save
  • Abarca, S. F., and M. T. Montgomery, 2014: Departures from axisymmetric balance dynamics during secondary eyewall formation. J. Atmos. Sci., 71, 37233738, https://doi.org/10.1175/JAS-D-14-0018.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Abarca, S. F., M. T. Montgomery, and J. C. McWilliams, 2015: The azimuthally averaged boundary layer structure of a numerically simulated major hurricane. J. Adv. Model. Earth Syst., 7, 12071219, https://doi.org/10.1002/2015MS000457.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Abarca, S. F., M. T. Montgomery, S. A. Braun, and J. Dunion, 2016: On secondary eyewall formation of Hurricane Edouard (2014). Mon. Wea. Rev., 144, 33213331, https://doi.org/10.1175/MWR-D-15-0421.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bui, H. H., R. K. Smith, M. T. Montgomery, and J. Peng, 2009: Balanced and unbalanced aspects of tropical cyclone intensification. Quart. J. Roy. Meteor. Soc., 135, 17151731, https://doi.org/10.1002/qj.502.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dunion, J. P., 2011: Rewriting the climatology of the tropical North Atlantic and Caribbean Sea atmosphere. J. Climate, 24, 893908, https://doi.org/10.1175/2010JCLI3496.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eliassen, A., 1962: On the vertical circulation in frontal zones. Geofys. Publ., 24 (4), 147160.

  • Eliassen, A., and M. Lystad, 1977: The Ekman layer of a circular vortex: A numerical and theoretical study. Geophys. Norv., 31, 116.

  • Emanuel, K. A., 1986: An air–sea interaction theory for tropical cyclones. Part I: Steady-state maintenance. J. Atmos. Sci., 43, 585604, https://doi.org/10.1175/1520-0469(1986)043<0585:AASITF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1995: The behavior of a simple hurricane model using a convective scheme based on subcloud-layer entropy equilibrium. J. Atmos. Sci., 52, 39603968, https://doi.org/10.1175/1520-0469(1995)052<3960:TBOASH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1997: Some aspects of hurricane inner-core dynamics and energetics. J. Atmos. Sci., 54, 10141026, https://doi.org/10.1175/1520-0469(1997)054<1014:SAOHIC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 2012: Self-stratification of tropical cyclone outflow. Part II: Implications for storm intensification. J. Atmos. Sci., 69, 988996, https://doi.org/10.1175/JAS-D-11-0177.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fang, J., and F. Zhang, 2011: Evolution of multiscale vortices in the development of Hurricane Dolly (2008). J. Atmos. Sci., 68, 103122, https://doi.org/10.1175/2010JAS3522.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hack, J. J., and W. H. Schubert, 1986: Nonlinear response of atmospheric vortices to heating by organized cumulus convection. J. Atmos. Sci., 43, 15591573, https://doi.org/10.1175/1520-0469(1986)043<1559:NROAVT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heng, J., and Y. Wang, 2016: Nonlinear response of a tropical cyclone vortex to prescribed eyewall heating with and without surface friction in TCM4: Implications for tropical cyclone intensification. J. Atmos. Sci., 73, 13151333, https://doi.org/10.1175/JAS-D-15-0164.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., and F. P. Bretherton, 1972: Atmospheric frontogenesis models: Mathematical formulation and solution. J. Atmos. Sci., 29, 1137, https://doi.org/10.1175/1520-0469(1972)029<0011:AFMMFA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kilroy, G., and R. K. Smith, 2016: A numerical study of deep convection in tropical cyclones. Quart. J. Roy. Meteor. Soc., 142, 31383151, https://doi.org/10.1002/qj.2895.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McWilliams, J. C., 2011: Fundamentals of Geophysical Fluid Dynamics. Cambridge University Press, 272 pp.

  • McWilliams, J. C., L. P. Graves, and M. T. Montgomery, 2003: A formal theory for vortex Rossby waves and vortex evolution. Geophys. Astrophys. Fluid Dyn., 97, 275309, https://doi.org/10.1080/0309192031000108698.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Menelaou, K., D. A. Schecter, and M. K. Yau, 2016: On the relative contribution of inertia–gravity wave radiation to asymmetric instabilities in tropical cyclone–like vortices. J. Atmos. Sci., 73, 3345337, https://doi.org/10.1175/JAS-D-15-0360.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Möller, J. D., and R. K. Smith, 1994: The development of potential vorticity in a hurricane-like vortex. Quart. J. Roy. Meteor. Soc., 120, 12551265, https://doi.org/10.1002/qj.49712051907.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Möller, J. D., and M. T. Montgomery, 2000: Tropical cyclone evolution via potential vorticity anomalies in a three-dimensional balance model. J. Atmos. Sci., 57, 33663387, https://doi.org/10.1175/1520-0469(2000)057<3366:TCEVPV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Möller, J. D., and L. J. Shapiro, 2002: Balanced contributions to the intensification of Hurricane Opal as diagnosed from a GFDL model forecast. Mon. Weather Rev., 130, 18661881, https://doi.org/10.1175/1520-0493(2002)130<1866:BCTTIO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., and L. J. Shapiro, 1995: Generalized Charney–Stern and Fjortoft theorems for rapidly rotating vortices. J. Atmos. Sci., 52, 18291833, https://doi.org/10.1175/1520-0469(1995)052<1829:GCAFTF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., and R. K. Smith, 2014: Paradigms for tropical cyclone intensification. Aust. Meteor. Oceanogr. J., 64, 3766.

  • Montgomery, M. T., and R. K. Smith, 2017: Recent developments in the fluid dynamics of tropical cyclones. Annu. Rev. Fluid Mech., 49, 541574, https://doi.org/10.1146/annurev-fluid-010816-060022.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., H. D. Snell, and Z. Yang, 2001: Axisymmetric spindown dynamics of hurricane-like vortices. J. Atmos. Sci., 58, 421435, https://doi.org/10.1175/1520-0469(2001)058<0421:ASDOHL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., V. A. Vladimirov, and P. V. Denissenko, 2002: An experimental study on hurricane mesovortices. J. Fluid Mech., 471, 132, https://doi.org/10.1017/S0022112002001647.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., M. E. Nichols, T. A. Cram, and A. B. Saunders, 2006: A vortical hot tower route to tropical cyclogenesis. J. Atmos. Sci., 63, 355386, https://doi.org/10.1175/JAS3604.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Naylor, J., and D. A. Schecter, 2014: Evaluation of the impact of moist convection on the development of asymmetric inner core instabilities in simulated tropical cyclones. J. Adv. Model. Earth Syst., 6, 10271048, https://doi.org/10.1002/2014MS000366.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ooyama, K. V., 1969: Numerical simulation of the life cycle of tropical cyclones. J. Atmos. Sci., 26, 340, https://doi.org/10.1175/1520-0469(1969)026<0003:NSOTLC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ooyama, K. V., 1982: Conceptual evolution of the theory and modeling of the tropical cyclone. J. Meteor. Soc. Japan, 60, 369380, https://doi.org/10.2151/jmsj1965.60.1_369.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Paull, G., K. Menelaou, and M. K. Yau, 2017: Sensitivity of tropical cyclone intensification to axisymmetric heat sources: The role of inertial stability. J. Atmos. Sci., 74, 23252340, https://doi.org/10.1175/JAS-D-16-0298.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pendergrass, A. G., and H. E. Willoughby, 2009: Diabatically induced secondary flows in tropical cyclones. Part I: Quasi-steady forcing. Mon. Wea. Rev., 137, 805821, https://doi.org/10.1175/2008MWR2657.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Persing, J., M. T. Montgomery, J. McWilliams, and R. K. Smith, 2013: Asymmetric and axisymmetric dynamics of tropical cyclones. Atmos. Chem. Phys., 13, 12 29912 341, https://doi.org/10.5194/acp-13-12299-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rotunno, R., 2014: Secondary circulations in rotating-flow boundary layers. Aust. Meteor. Oceanogr. J., 64, 2735.

  • Rozoff, C. M., W. H. Schubert, and J. P. Kossin, 2008: Some dynamical aspects of tropical cyclone concentric eyewalls. Quart. J. Roy. Meteor. Soc., 134, 583593, https://doi.org/10.1002/qj.237.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmidt, C. J., and R. K. Smith, 2016: Tropical cyclone evolution in a minimal axisymmetric model revisited. Quart. J. Roy. Meteor. Soc., 142, 15051516, https://doi.org/10.1002/qj.2753.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schubert, W. H., and B. T. Alworth, 1982: Evolution of potential vorticity in tropical cyclones. Quart. J. Roy. Meteor. Soc., 39, 16871697, https://doi.org/10.1002/qj.49711347509.

    • Search Google Scholar
    • Export Citation
  • Schubert, W. H., and J. J. Hack, 1982: Inertial stability and tropical cyclone development. J. Atmos. Sci., 39, 16871697, https://doi.org/10.1175/1520-0469(1982)039<1687:ISATCD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schubert, W. H., M. T. Montgomery, R. K. Taft, T. A. Guinn, S. R. Fulton, J. P. Kossin, and J. P. Edwards, 1999: Polygonal eyewalls, asymmetric eye contraction, and potential vorticity mixing in hurricanes. J. Atmos. Sci., 56, 11971923, https://doi.org/10.1175/1520-0469(1999)056<1197:PEAECA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schubert, W. H., C. J. Slocum, J. L. Vigh, B. D. McNoldy, and J. P. Kossin, 2007: On the distribution of subsidence in the hurricane eye. Quart. J. Roy. Meteor. Soc., 133, 595605, https://doi.org/10.1002/qj.49.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schubert, W. H., C. J. Slocum, and R. K. Taft, 2016: Forced, balanced model of tropical cyclone intensification. J. Meteor. Soc. Japan, 94, 119135, https://doi.org/10.2151/jmsj.2016-007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shapiro, L. J., and H. Willoughby, 1982: The response of balanced hurricanes to local sources of heat and momentum. J. Atmos. Sci., 39, 378394, https://doi.org/10.1175/1520-0469(1982)039<0378:TROBHT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shapiro, L. J., and M. T. Montgomery, 1993: A three-dimensional balance theory for rapidly rotating vortices. J. Atmos. Sci., 50, 33223335, https://doi.org/10.1175/1520-0469(1993)050<3322:ATDBTF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, R. K., 1981: The cyclostrophic adjustment of vortices with application to tropical cyclone modification. J. Atmos. Sci., 38, 20202030, https://doi.org/10.1175/1520-0469(1981)038<2021:TCAOVW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, R. K., 2006: Accurate determination of a balanced axisymmetric vortex. Tellus, 58A, 98103, https://doi.org/10.1111/j.1600-0870.2006.00149.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, R. K., and M. T. Montgomery, 2008: Balanced boundary layers used in hurricane models. Quart. J. Roy. Meteor. Soc., 134, 13851395, https://doi.org/10.1002/qj.296.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, R. K., and M. T. Montgomery, 2015: Toward clarity on understanding tropical cyclone intensification. J. Atmos. Sci., 72, 30203031, https://doi.org/10.1175/JAS-D-15-0017.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, R. K., and M. T. Montgomery, 2016a: Comments on “Nonlinear response of a tropical cyclone vortex to prescribed eyewall heating with and without surface friction in TCM4: Implications for tropical cyclone intensification.” J. Atmos. Sci., 73, 51015103, https://doi.org/10.1175/JAS-D-16-0163.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, R. K., and M. T. Montgomery, 2016b: The efficiency of diabatic heating and tropical cyclone intensification. Quart. J. Roy. Meteor. Soc., 142, 20812086, https://doi.org/10.1002/qj.2804.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, R. K., and S. Wang, 2018: Axisymmetric balance dynamics of tropical cyclone intensification: Diabatic heating versus surface friction. Quart. J. Roy. Meteor. Soc., https://doi.org/10.1002/qj.3389, in press.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, R. K., M. T. Montgomery, and H. Zhu, 2005: Buoyancy in tropical cyclone and other rapidly rotating atmospheric vortices. Dyn. Atmos. Oceans, 40, 189208, https://doi.org/10.1016/j.dynatmoce.2005.03.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, R. K., M. T. Montgomery, and N. Van Sang, 2009: Tropical cyclone spin-up revisited. Quart. J. Roy. Meteor. Soc., 135, 13211335, https://doi.org/10.1002/qj.428.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, R. K., G. Kilroy, and M. T. Montgomery, 2014: Why do model tropical cyclones intensify more rapidly at low latitudes? J. Atmos. Sci., 140, 17831804, https://doi.org/10.1175/JAS-D-14-0044.1.

    • Search Google Scholar
    • Export Citation
  • Stern, D. P., J. L. Vigh, D. S. Nolan, and F. Zhang, 2015: Revisiting the relationship between eyewall contraction and intensification. J. Atmos. Sci., 72, 12831306, https://doi.org/10.1175/JAS-D-14-0261.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sundqvist, H., 1970a: Numerical simulation of the development of tropical cyclones with a ten-level model. Part I. Tellus, 4, 359390, https://doi.org/10.1111/j.2153-3490.1970.tb00503.x.

    • Search Google Scholar
    • Export Citation
  • Sundqvist, H., 1970b: Numerical simulation of the development of tropical cyclones with a ten-level model. Part II. Tellus, 5, 505510, https://doi.org/10.1111/j.2153-3490.1970.tb00516.x.

    • Search Google Scholar
    • Export Citation
  • Thorpe, A. J., and R. Rotunno, 1989: Nonlinear aspects of symmetric instability. J. Atmos. Sci., 46, 12851299, https://doi.org/10.1175/1520-0469(1989)046<1285:NAOSI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vigh, J. L., and W. H. Schubert, 2009: Rapid development of the tropical cyclone warm core. J. Atmos. Sci., 66, 33353350, https://doi.org/10.1175/2009JAS3092.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Y., and H. Wang, 2013: The inner-core size increase of Typhoon Megi (2010) during its rapid intensification phase. Trop. Cyclone Res. Rev., 2, 6580, https://doi.org/10.6057/2013TCRR02.01.

    • Search Google Scholar
    • Export Citation
  • Willoughby, H. E., 1979: Forced secondary circulations in hurricanes. J. Geophys. Res., 84, 31733183, https://doi.org/10.1029/JC084iC06p03173.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wirth, V., and T. J. Dunkerton, 2006: A unified perspective on the dynamics of axisymmetric hurricanes and monsoons. J. Atmos. Sci., 63, 25292547, https://doi.org/10.1175/JAS3763.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, J., and Y. Wang, 2010: Sensitivity of tropical cyclone inner-core size and intensity to the radial distribution of surface entropy flux. J. Atmos. Sci., 67, 18311852, https://doi.org/10.1175/2010JAS3387.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, J. A., and F. D. Marks, 2015: Effects of horizontal diffusion on tropical cyclone intensity change and structure in idealized three-dimensional numerical simulations. Mon. Wea. Rev., 143, 39813995, https://doi.org/10.1175/MWR-D-14-00341.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 703 230 69
PDF Downloads 516 108 23