Secondary Ice Production by Fragmentation of Freezing Drops: Formulation and Theory

Vaughan T. J. Phillips Department of Physical Geography, Lund University, Lund, Sweden

Search for other papers by Vaughan T. J. Phillips in
Current site
Google Scholar
PubMed
Close
,
Sachin Patade Department of Physical Geography, Lund University, Lund, Sweden

Search for other papers by Sachin Patade in
Current site
Google Scholar
PubMed
Close
,
Julie Gutierrez Department of Physical Geography, Lund University, Lund, Sweden

Search for other papers by Julie Gutierrez in
Current site
Google Scholar
PubMed
Close
, and
Aaron Bansemer National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Aaron Bansemer in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A numerical formulation is provided for secondary ice production during fragmentation of freezing raindrops or drizzle. This is obtained by pooling laboratory observations from published studies and considering the physics of collisions. There are two modes of the scheme: fragmentation during spherical drop freezing (mode 1) and during collisions of supercooled raindrops with more massive ice (mode 2). The empirical scheme is for atmospheric models. Microphysical simulations with a parcel model of fast ascent (8 m s−1) between −10° and −20°C are validated against aircraft observations of tropical maritime deep convection. Ice enhancement by an order of magnitude is predicted from inclusion of raindrop-freezing fragmentation, as observed. The Hallett–Mossop (HM) process was active too. Both secondary ice mechanisms (HM and raindrop freezing) are accelerated by a positive feedback involving collisional raindrop freezing. An energy-based theory is proposed explaining the laboratory observations of mode 1, both of approximate proportionality between drop size and fragment numbers and of their thermal peak. To illustrate the behavior of the scheme in both modes, the glaciation of idealized monodisperse populations of drops is elucidated with an analytical zero-dimensional (0D) theory treating the freezing in drop–ice collisions by a positive feedback of fragmentation. When drops are too few or too small (≪1 mm), especially at temperatures far from −15°C (mode 1), there is little raindrop-freezing fragmentation on realistic time scales of natural clouds, but otherwise, high ice enhancement (IE) ratios of up to 100–1000 are possible. Theoretical formulas for the glaciation time of such drop populations, and their maximum and initial growth rates of IE ratio, are proposed.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Vaughan T. J. Phillips, vaughan.phillips@nateko.lu.se

Abstract

A numerical formulation is provided for secondary ice production during fragmentation of freezing raindrops or drizzle. This is obtained by pooling laboratory observations from published studies and considering the physics of collisions. There are two modes of the scheme: fragmentation during spherical drop freezing (mode 1) and during collisions of supercooled raindrops with more massive ice (mode 2). The empirical scheme is for atmospheric models. Microphysical simulations with a parcel model of fast ascent (8 m s−1) between −10° and −20°C are validated against aircraft observations of tropical maritime deep convection. Ice enhancement by an order of magnitude is predicted from inclusion of raindrop-freezing fragmentation, as observed. The Hallett–Mossop (HM) process was active too. Both secondary ice mechanisms (HM and raindrop freezing) are accelerated by a positive feedback involving collisional raindrop freezing. An energy-based theory is proposed explaining the laboratory observations of mode 1, both of approximate proportionality between drop size and fragment numbers and of their thermal peak. To illustrate the behavior of the scheme in both modes, the glaciation of idealized monodisperse populations of drops is elucidated with an analytical zero-dimensional (0D) theory treating the freezing in drop–ice collisions by a positive feedback of fragmentation. When drops are too few or too small (≪1 mm), especially at temperatures far from −15°C (mode 1), there is little raindrop-freezing fragmentation on realistic time scales of natural clouds, but otherwise, high ice enhancement (IE) ratios of up to 100–1000 are possible. Theoretical formulas for the glaciation time of such drop populations, and their maximum and initial growth rates of IE ratio, are proposed.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Vaughan T. J. Phillips, vaughan.phillips@nateko.lu.se
Save
  • Bader, M., J. Gloster, J. L. Brownscombe, and P. Goldsmith, 1974: The production of sub-micron ice fragments by water droplets freezing in free fall or on accretion upon an ice surface. Quart. J. Roy. Meteor. Soc., 100, 420426, https://doi.org/10.1002/qj.49710042513.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barnes, P., D. Tabor, and J. C. F. Walker, 1971: The friction and creep of polycrystalline ice. Proc. Roy. Soc. London, 324A, 127155, https://doi.org/10.1098/rspa.1971.0132.

    • Search Google Scholar
    • Export Citation
  • Blyth, A. M., and J. Latham, 1993: Development of ice and precipitation in New Mexican summertime cumulus clouds. Quart. J. Roy. Meteor. Soc., 119, 91120, https://doi.org/10.1002/qj.49711950905.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blyth, A. M., and J. Latham, 1997: A multi-thermal model of cumulus glaciation via the Hallett-Mossop process. Quart. J. Roy. Meteor. Soc., 123, 11851198, https://doi.org/10.1002/qj.49712354104.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blyth, A. M., R. E. Benestad, P. R. Krehbiel, and J. Latham, 1997: Observations of supercooled raindrops in New Mexico summertime cumuli. J. Atmos. Sci., 54, 569575, https://doi.org/10.1175/1520-0469(1997)054<0569:OOSRIN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bott, A., 1998: A flux method for the numerical solution of the stochastic collection equation. J. Atmos. Sci., 55, 22842293, https://doi.org/10.1175/1520-0469(1998)055<2284:AFMFTN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brownscombe, J. L., and N. S. C. Thorndike, 1968: Freezing and shattering of water droplets in free fall. Nature, 220, 687689, https://doi.org/10.1038/220687a0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brownscombe, J. L., and P. Goldsmith, 1972: On the possible production of submicron ice fragments during riming or the freezing of droplets in free fall. Preprints, Int. Cloud Physics Conf., London, United Kingdom, Royal Meteorological Society, 27–28.

  • Cotton, W. R., and Coauthors, 2003: RAMS 2001: Current status and future directions. Meteor. Atmos. Phys., 82, 529, https://doi.org/10.1007/s00703-001-0584-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Currier, J. H., and E. M. Schulson, 1982: The tensile strength of ice as a function of grain size. Acta Metall., 30, 15111514, https://doi.org/10.1016/0001-6160(82)90171-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Field, P. R., and Coauthors, 2017: Secondary ice production: Current state of the science and recommendations for the future. Ice Formation and Evolution in Clouds and Precipitation: Measurement and Modeling Challenges, Meteor. Monogr., No. 58, Amer. Meteor. Soc., https://doi.org/10.1175/AMSMONOGRAPHS-D-16-0014.1.

    • Crossref
    • Export Citation
  • Gammon, P. H., H. Kiefte, and M. J. Clouter, 1983: Elastic constants of ice samples by Brillouin spectroscopy. J. Phys. Chem., 87, 40254029, https://doi.org/10.1021/j100244a004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hallett, J., and S. C. Mossop, 1974: Production of secondary ice particles during the riming process. Nature, 249, 2628, https://doi.org/10.1038/249026a0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hallett, J., R. I. Sax, D. Lamb, and A. S. Ramachandra Murty, 1978: Aircraft measurements of ice in Florida cumuli. Q J. Roy. Meteor. Soc., 104, 631651, https://doi.org/10.1002/qj.49710444108.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harris-Hobbs, R. L., and W. A. Cooper, 1987: Field evidence supporting quantitative predictions of secondary ice production rates. J. Atmos. Sci., 44, 10711082, https://doi.org/10.1175/1520-0469(1987)044<1071:FESQPO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heymsfield, A., and P. Willis, 2014: Cloud conditions favoring secondary ice particle production in tropical maritime convection. J. Atmos. Sci., 71, 45004526, https://doi.org/10.1175/JAS-D-14-0093.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hobbs, P. V., 1969: Ice multiplication in clouds. J. Atmos. Sci., 26, 315318, https://doi.org/10.1175/1520-0469(1969)026<0315:IMIC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hobbs, P. V., and A. J. Alkezweeny, 1968: The fragmentation of freezing water droplets in free fall. J. Atmos. Sci., 25, 881888, https://doi.org/10.1175/1520-0469(1968)025<0881:TFOFWD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hobbs, P. V., M. K. Politovich, and L. F. Radke, 1980: The structures of summer convective clouds in eastern Montana. I: Natural clouds. J. Appl. Meteor., 19, 645663, https://doi.org/10.1175/1520-0450(1980)019<0645:TSOSCC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, D. A., and J. Hallett, 1968: Freezing and shattering of supercooled water drops. Quart. J. Roy. Meteor. Soc., 94, 468482, https://doi.org/10.1002/qj.49709440204.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ketcham, W. M., and P. V. Hobbs, 1969: An experimental determination of the surface energies of ice. Philos. Mag., 19, 1161–1173, https://doi.org/10.1080/14786436908228641.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • King, W. D., and N. H. Fletcher, 1973: Pressures and stresses in freezing water drops. J. Phys., 6D, 21572173, https://doi.org/10.1088/0022-3727/6/18/302.

    • Search Google Scholar
    • Export Citation
  • Knight, C. A., and N. C. Knight, 1974: Drop freezing in clouds. J. Atmos. Sci., 31, 11741176, https://doi.org/10.1175/1520-0469(1974)031<1174:DFIC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kolomeychuk, R. J., D. C. McCay, and J. V. Iribarne, 1975: The fragmentation and electrification of freezing drops. J. Atmos. Sci., 32, 974979, https://doi.org/10.1175/1520-0469(1975)032<0974:TFAEOF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lasher-Trapp, S., D. C. Leon, P. J. DeMott, C. M. Villanueva-Birriel, A. V. Johnson, D. H. Moser, C. S. Tully, and W. Wu, 2016: A multisensor investigation of rime splintering in tropical maritime cumuli. J. Atmos. Sci., 73, 25472564, https://doi.org/10.1175/JAS-D-15-0285.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Latham, J., and R. Warwicker, 1980: Charge transfer accompanying the splashing of supercooled raindrops on hailstones. Quart. J. Roy. Meteor. Soc., 106, 559568, https://doi.org/10.1002/qj.49710644912.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lawson, R. P., S. Woods, and H. Morrison, 2015: The microphysics of ice and precipitation development in tropical cumulus clouds. J. Atmos. Sci., 72, 24292445, https://doi.org/10.1175/JAS-D-14-0274.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leisner, L., T. Pander, P. Handmann, and A. Kiselev, 2014: Secondary ice processes upon heterogeneous freezing of cloud droplets. 14th Conf. on Cloud Physics and Atmospheric Radiation, Boston, MA, Amer. Meteor. Soc., 2.3, https://ams.confex.com/ams/14CLOUD14ATRAD/webprogram/Paper250221.html.

  • Levin, Z., and P. V. Hobbs, 1971: Splashing of water drops on solid and wetted surfaces: Hydrodynamics and charge separation. Philos. Trans. Roy. Soc. London, 269A, 555585, https://doi.org/10.1098/rsta.1971.0052.

    • Search Google Scholar
    • Export Citation
  • Lew, J. K., and H. R. Pruppacher, 1983: A theoretical determination of the capture efficiency of small columnar ice crystals by large cloud drops. J. Atmos. Sci., 40, 139145, https://doi.org/10.1175/1520-0469(1983)040<0139:ATDOTC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lew, J. K., D. E. Kingsmill, and D. C. Montague, 1985: A theoretical study of the collision efficiency of small planar ice crystals colliding with large supercooled water drops. J. Atmos. Sci., 42, 857862, https://doi.org/10.1175/1520-0469(1985)042<0857:ATSOTC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Low, T. B., and R. List, 1982: Collision, coalescence and breakup of raindrops. Part I: Experimentally established coalescence efficiencies and fragment size distributions in breakup. J. Atmos. Sci., 39, 15911606, https://doi.org/10.1175/1520-0469(1982)039<1591:CCABOR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Macklin, W. C., and G. S. Payne, 1967: A theoretical study of the ice accretion process. Quart. J. Roy. Meteor. Soc., 93, 195213, https://doi.org/10.1002/qj.49709339606.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Macklin, W. C., and G. S. Payne, 1968: Some aspects of the accretion process. Quart. J. Roy. Meteor. Soc., 94, 167175, https://doi.org/10.1002/qj.49709440006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Phillips, V. T. J., 2001: Simulations of the glaciation of a New Mexican storm cloud with an explicit microphysics model (EMM). Ph.D. thesis, University of Manchester, 199 pp.

  • Phillips, V. T. J., A. M. Blyth, P. R. A. Brown, T. W. Choularton, and J. Latham, 2001: The glaciation of a cumulus cloud over New Mexico. Quart. J. Roy. Meteor. Soc., 127, 15131534, https://doi.org/10.1002/qj.49712757503.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Phillips, V. T. J., T. W. Choularton, A. M. Blyth, and J. Latham, 2002: The influence of aerosol concentrations on the glaciation and precipitation production of a cumulus cloud. Quart. J. Roy. Meteor. Soc., 128, 951971, https://doi.org/10.1256/0035900021643601.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Phillips, V. T. J., T. W. Choularton, A. J. Illingworth, R. J. Hogan, and P. R. Field, 2003: Simulations of the glaciation of a frontal mixed-phase cloud with the explicit microphysics model (EMM). Quart. J. Roy. Meteor. Soc., 129, 13511371, https://doi.org/10.1256/qj.02.100.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Phillips, V. T. J., and Coauthors, 2005: Anvil glaciation in a deep cumulus updraught over Florida simulated with the explicit microphysics model. I: Impact of various nucleation processes. Quart. J. Roy. Meteor. Soc., 131, 20192046, https://doi.org/10.1256/qj.04.85.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Phillips, V. T. J., P. J. DeMott, and C. Andronache, 2008: An empirical parameterization of heterogeneous ice nucleation for multiple chemical species of aerosol. J. Atmos. Sci., 65, 27572783, https://doi.org/10.1175/2007JAS2546.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Phillips, V. T. J., P. J. DeMott, C. Andronache, K. A. Pratt, K. A. Prather, R. Subramanian, and C. Twohy, 2013: Improvements to an empirical parameterization of heterogeneous ice nucleation and its comparison with observations. J. Atmos. Sci., 70, 378409, https://doi.org/10.1175/JAS-D-12-080.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Phillips, V. T. J., A. Khain, N. Benmoshe, and E. Ilotoviz, 2014: Theory of time-dependent freezing. Part I: Description of scheme for wet growth of hail. J. Atmos. Sci., 71, 45274557, https://doi.org/10.1175/JAS-D-13-0375.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Phillips, V. T. J., A. Khain, N. Benmoshe, E. Ilotoviz, and A. Ryzhkov, 2015a: Theory of time-dependent freezing. Part II: Scheme for freezing raindrops and simulations by a cloud model with spectral bin microphysics. J. Atmos. Sci., 72, 262286, https://doi.org/10.1175/JAS-D-13-0376.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Phillips, V. T. J., M. Formenton, A. Bansemer, I. Kudzotsa, and B. Lienert, 2015b: A parameterization of sticking efficiency for collisions of snow and graupel with ice crystals: Theory and comparison with observations. J. Atmos. Sci., 72, 48854902, https://doi.org/10.1175/JAS-D-14-0096.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Phillips, V. T. J., J.-I. Yano, and A. Khain, 2017a: Ice multiplication by breakup in ice–ice collisions. Part I: Theoretical formulation. J. Atmos. Sci., 74, 17051719, https://doi.org/10.1175/JAS-D-16-0224.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Phillips, V. T. J., and Coauthors, 2017b: Ice multiplication by breakup in ice–ice collisions. Part II: Numerical simulations. J. Atmos. Sci., 74, 27892811, https://doi.org/10.1175/JAS-D-16-0223.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pitter, R. L., and H. R. Pruppacher, 1973: A wind tunnel investigation of freezing of small water drops falling at terminal velocity in air. Quart. J. Roy. Meteor. Soc., 99, 540550, https://doi.org/10.1002/qj.49709942111.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pruppacher, H. R., and R. J. Schlamp, 1975: A wind tunnel investigation of ice multiplication by freezing of waterdrops falling at terminal velocity in air. J. Geophys. Res., 80, 380386, https://doi.org/10.1029/JC080i003p00380.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pruppacher, H. R., and J. Klett, 1997: Microphysics of Clouds and Precipitation. Kluwer Academic, 954 pp.

  • Rangno, A. L., 2008: Fragmentation of freezing drops in shallow maritime frontal clouds. J. Atmos. Sci., 65, 14551466, https://doi.org/10.1175/2007JAS2295.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rangno, A. L., and P. V. Hobbs, 2005: Microstructures and precipitation development in cumulus and small cumulonimbus clouds over the warm pool of the tropical Pacific Ocean. Quart. J. Roy. Meteor. Soc., 131, 639673, https://doi.org/10.1256/qj.04.13.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rogers, R. R., and M. K. Yau, 1989: A Short Course in Cloud Physics. Pergamon Press, 290 pp.

  • Ryan, B. F., E. R. Wishart, and D. E. Shaw, 1976: The growth rates and densities of ice crystals between −3°C and −21°C. J. Atmos. Sci., 33, 842850, https://doi.org/10.1175/1520-0469(1976)033<0842:TGRADO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schremb, M., I. V. Roisman, and C. Tropea, 2017: Transient effects in ice nucleation of a water drop impacting onto a cold substrate. Phys. Rev., 95E, 022805, https://doi.org/10.1103/PhysRevE.95.022805.

    • Search Google Scholar
    • Export Citation
  • Sullivan, S. C., C. Hoose, A. Kiselev, T. Leisner, and A. Nenes, 2018: Initiation of secondary ice production in clouds. Atmos. Chem. Phys., 18, 15931610, https://doi.org/10.5194/acp-18-1593-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Takahashi, C., 1975: Deformations of frozen water drops and their frequencies. J. Meteor. Soc. Japan, 53, 402411, https://doi.org/10.2151/jmsj1965.53.6_402.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Takahashi, C., and A. Yamashita, 1969: Deformation and fragmentation of freezing water drops in free fall. J. Meteor. Soc. Japan, 47, 431436, https://doi.org/10.2151/jmsj1965.47.6_431.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Takahashi, C., and A. Yamashita, 1970: Shattering of frozen water drops in a supercooled cloud. J. Meteor. Soc. Japan, 48, 373376, https://doi.org/10.2151/jmsj1965.48.4_373.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Takahashi, C., and A. Yamashita, 1977: Production of ice splinters by the freezing of water drops in free fall. J. Meteor. Soc. Japan, 55, 139141, https://doi.org/10.2151/jmsj1965.55.1_139.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Takahashi, T., and N. Fukuta, 1988: Observations of the embryos of graupel. J. Atmos. Sci., 45, 32883297, https://doi.org/10.1175/1520-0469(1988)045<3288:OOTEOG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, J. W., and Coauthors, 2016: Observations of cloud microphysics and ice formation during COPE. Atmos. Chem. Phys., 16, 799826, https://doi.org/10.5194/acp-16-799-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Testik, F. Y., A. P. Barros, and L. F. Biven, 2011: Toward a physical characterization of raindrop collision outcome regimes. J. Atmos. Sci., 68, 10971113, https://doi.org/10.1175/2010JAS3706.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wildeman, S., S. Sterl, C. Sun, and D. Lohse, 2017: Fast dynamics of water droplets freezing from the outside in. Phys. Rev. Lett., 118, 084101, https://doi.org/10.1103/PhysRevLett.118.084101.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yano, J.-I., and V. T. J. Phillips, 2011: Ice–ice collisions: An ice multiplication process in atmospheric clouds. J. Atmos. Sci., 68, 322333, https://doi.org/10.1175/2010JAS3607.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1307 396 32
PDF Downloads 1092 375 23