Baroclinic Adjustment and Dissipative Control of Storm Tracks

Lenka Novak Department of Meteorology, University of Reading, Reading, United Kingdom

Search for other papers by Lenka Novak in
Current site
Google Scholar
PubMed
Close
,
Maarten H. P. Ambaum Department of Meteorology, University of Reading, Reading, United Kingdom

Search for other papers by Maarten H. P. Ambaum in
Current site
Google Scholar
PubMed
Close
, and
Ben J. Harvey Department of Meteorology, University of Reading, Reading, United Kingdom

Search for other papers by Ben J. Harvey in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The steady-state response of a midlatitude storm track to large-scale extratropical thermal forcing and eddy friction is investigated in a dry general circulation model with a zonally symmetric forcing. A two-way equilibration is found between the relative responses of the mean baroclinicity and baroclinic eddy intensity, whereby mean baroclinicity responds more strongly to eddy friction whereas eddy intensity responds more strongly to the thermal forcing of baroclinicity. These seemingly counterintuitive responses are reconciled using the steady state of a predator–prey relationship between baroclinicity and eddy intensity. This relationship provides additional support for the well-studied mechanism of baroclinic adjustment in Earth’s atmosphere, as well as providing a new mechanism whereby eddy dissipation controls the large-scale thermal structure of a baroclinically unstable atmosphere. It is argued that these two mechanisms of baroclinic adjustment and dissipative control should be used in tandem when considering storm-track equilibration.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Current affiliation: California Institute of Technology, Pasadena, California.

Corresponding author: Lenka Novak, lenka@caltech.edu

Abstract

The steady-state response of a midlatitude storm track to large-scale extratropical thermal forcing and eddy friction is investigated in a dry general circulation model with a zonally symmetric forcing. A two-way equilibration is found between the relative responses of the mean baroclinicity and baroclinic eddy intensity, whereby mean baroclinicity responds more strongly to eddy friction whereas eddy intensity responds more strongly to the thermal forcing of baroclinicity. These seemingly counterintuitive responses are reconciled using the steady state of a predator–prey relationship between baroclinicity and eddy intensity. This relationship provides additional support for the well-studied mechanism of baroclinic adjustment in Earth’s atmosphere, as well as providing a new mechanism whereby eddy dissipation controls the large-scale thermal structure of a baroclinically unstable atmosphere. It is argued that these two mechanisms of baroclinic adjustment and dissipative control should be used in tandem when considering storm-track equilibration.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Current affiliation: California Institute of Technology, Pasadena, California.

Corresponding author: Lenka Novak, lenka@caltech.edu
Save
  • Ambaum, M. H. P., and L. Novak, 2014: A nonlinear oscillator describing storm track variability. Quart. J. Roy. Meteor. Soc., 140, 26802684, https://doi.org/10.1002/qj.2352.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Andrews, D. G., 1981: A note on potential energy density in a stratified compressible fluid. J. Fluid Mech., 107, 227236, https://doi.org/10.1017/S0022112081001754.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blanco-Fuentes, J., and P. Zurita-Gotor, 2011: The driving of baroclinic anomalies at different timescales. Geophys. Res. Lett., 38, L23805, https://doi.org/10.1029/2011GL049785.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ceppi, P., F. Brient, M. D. Zelinka, and D. L. Hartmann, 2017: Cloud feedback mechanisms and their representation in global climate models. Wiley Interdiscip. Rev.: Climate Change, 8, e465, https://doi.org/10.1002/wcc.465.

    • Search Google Scholar
    • Export Citation
  • Chen, G., I. M. Held, and W. A. Robinson, 2007: Sensitivity of the latitude of the surface westerlies to surface friction. J. Atmos. Sci., 64, 28992915, https://doi.org/10.1175/JAS3995.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, T.-C., 1983: The energy exchange between the baroclinic and barotropic components of atmospheric flow in the tropics during the FGGE summer. Mon. Wea. Rev., 111, 13891396, https://doi.org/10.1175/1520-0493(1983)111<1389:TEEBTB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fraedrich, K., E. Kirk, and F. Lunkeit, 1998: PUMA: Portable University Model of the Atmosphere. Deutsches Klimarechenzentrum Tech. Rep. 16, 38 pp.

  • Fraedrich, K., E. Kirk, U. Luksch, and F. Lunkeit, 2005: The Portable University Model of the Atmosphere (PUMA): Storm track dynamics and low-frequency variability. Meteor. Z., 14, 735745, https://doi.org/10.1127/0941-2948/2005/0074.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Green, J. S. A., 1960: A problem in baroclinic stability. Quart. J. Roy. Meteor. Soc., 86, 237251, https://doi.org/10.1002/qj.49708636813.

  • Hart, J. E., 1979: Finite amplitude baroclinic instability. Annu. Rev. Fluid Mech., 11, 147172, https://doi.org/10.1146/annurev.fl.11.010179.001051.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harvey, B., L. Shaffrey, and T. Woollings, 2013: Equator-to-pole temperature differences and the extra-tropical storm track responses of the CMIP5 climate models. Climate Dyn., 33, 11711182, https://doi.org/10.1007/s00382-013-1883-9.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., and M. J. Suarez, 1994: A proposal for the intercomparison of the dynamical cores of atmospheric general circulation models. Bull. Amer. Meteor. Soc., 75, 18251830, https://doi.org/10.1175/1520-0477(1994)075<1825:APFTIO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holliday, D., and M. E. McIntyre, 1981: On potential energy density in an incompressible stratified fluid. J. Fluid Mech., 107, 221225, https://doi.org/10.1017/S0022112081001742.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., and A. J. Simmons, 1975: A multi-layer spectral model and the semi-implicit method. Quart. J. Roy. Meteor. Soc., 101, 637655, https://doi.org/10.1002/qj.49710142918.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., and P. J. Valdes, 1990: On the existence of storm-tracks. J. Atmos. Sci., 47, 18541864, https://doi.org/10.1175/1520-0469(1990)047<1854:OTEOST>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., and K. I. Hodges, 2005: A new perspective on Southern Hemisphere storm tracks. J. Climate, 18, 41084129, https://doi.org/10.1175/JCLI3570.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., I. James, and G. White, 1983: The shape, propagation and mean-flow interaction of large-scale weather systems. J. Atmos. Sci., 40, 15951612, https://doi.org/10.1175/1520-0469(1983)040<1595:TSPAMF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • James, I. N., 1994: Introduction to Circulating Atmospheres. Cambridge University Press, 230 pp.

    • Crossref
    • Export Citation
  • Jansen, M., and R. Ferrari, 2012: Macroturbulent equilibration in a thermally forced primitive equation system. J. Atmos. Sci., 69, 695713, https://doi.org/10.1175/JAS-D-11-041.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jansen, M., and R. Ferrari, 2013: Equilibration of an atmosphere by adiabatic eddy fluxes. J. Atmos. Sci., 70, 29482962, https://doi.org/10.1175/JAS-D-13-013.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kållberg, P., P. Berrisford, B. Hoskins, A. Simmmons, S. Uppala, S. Lamy-Thépaut, and R. Hine, 2005: ERA-40 atlas. ECMWF ERA-40 Project Rep. 19, 191 pp.

  • Kim, H. K., and S. Lee, 2001: Hadley cell dynamics in a primitive equation model. Part II: Nonaxisymmetric flow. J. Atmos. Sci., 58, 28592871, https://doi.org/10.1175/1520-0469(2001)058<2859:HCDIAP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Levine, X. J., and T. Schneider, 2015: Baroclinic eddies and the extent of the Hadley circulation: An idealized GCM study. J. Atmos. Sci., 72, 27442761, https://doi.org/10.1175/JAS-D-14-0152.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lorenz, E. N., 1955: Available potential energy and the maintenance of the general circulation. Tellus, 7, 157167, https://doi.org/10.3402/tellusa.v7i2.8796.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lorenz, E. N., 1984: Irregularity: A fundamental property of the atmosphere. Tellus, 36A, 98110, https://doi.org/10.1111/j.1600-0870.1984.tb00230.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshall, D. P., M. H. P. Ambaum, J. R. Maddison, D. Munday, and L. Novak, 2017: Eddy saturation and frictional control of the Antarctic Circumpolar Current. Geophys. Res. Lett., 44, 286292, https://doi.org/10.1002/2016GL071702.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mbengue, C., and T. Schneider, 2013: Storm track shifts under climate change: What can be learned from large-scale dry dynamics. J. Climate, 26, 99239930, https://doi.org/10.1175/JCLI-D-13-00404.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mbengue, C., and T. Schneider, 2018: Linking Hadley circulation and storm tracks in a conceptual model of the atmospheric energy balance. J. Atmos. Sci., 75, 841856, https://doi.org/10.1175/JAS-D-17-0098.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Munday, D. R., H. L. Johnson, and D. P. Marshall, 2013: Eddy saturation of equilibrated circumpolar currents. J. Phys. Oceanogr., 43, 507532, https://doi.org/10.1175/JPO-D-12-095.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nie, Y., Y. Zhang, X.-Q. Yang, and G. Chen, 2013: Baroclinic anomalies associated with the Southern Hemisphere annular mode: Roles of synoptic and low-frequency eddies. Geophys. Res. Lett., 40, 23612366, https://doi.org/10.1002/grl.50396.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Novak, L., and R. Tailleux, 2018: On the local view of atmospheric available potential energy. J. Atmos. Sci., 75, 18911907, https://doi.org/10.1175/JAS-D-17-0330.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Novak, L., M. H. P. Ambaum, and R. Tailleux, 2015: The lifecycle of the North Atlantic storm track. J. Atmos. Sci., 72, 821833, https://doi.org/10.1175/JAS-D-14-0082.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Novak, L., M. H. P. Ambaum, and R. Tailleux, 2017: Marginal stability and predator–prey behaviour within storm tracks. Quart. J. Roy. Meteor. Soc., 143, 14211433, https://doi.org/10.1002/qj.3014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O’Gorman, P. A., 2010: Understanding the varied response of the extratropical storm tracks to climate change. Proc. Natl. Acad. Sci. USA, 107, 19 17619 180, https://doi.org/10.1073/pnas.1011547107.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O’Gorman, P. A., and T. Schneider, 2007: Recovery of atmospheric flow statistics in a general circulation model without nonlinear eddy-eddy interactions. Geophys. Res. Lett., 34, L22801, https://doi.org/10.1029/2007GL031779.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O’Gorman, P. A., and T. Schneider, 2008: Energy of midlatitude transient eddies in idealized simulations of changed climates. J. Climate, 21, 57975806, https://doi.org/10.1175/2008JCLI2099.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oort, A. H., 1964: On estimates of the atmospheric energy cycle. Mon. Wea. Rev., 92, 483493, https://doi.org/10.1175/1520-0493(1964)092<0483:OEOTAE>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Orlanski, I., 2003: Bifurcation in eddy life cycles: Implications for storm track variability. J. Atmos. Sci., 60, 9931023, https://doi.org/10.1175/1520-0469(2003)60<993:BIELCI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pedlosky, J., 1992: Geophysical Fluid Dynamics. Springer, 230 pp.

  • Pithan, F., T. G. Shepherd, G. Zappa, and I. Sandu, 2016: Climate model biases in jet streams, blocking and storm tracks resulting from missing orographic drag. Geophys. Res. Lett., 43, 72317240, https://doi.org/10.1002/2016GL069551.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Polichtchouk, I., and T. G. Shepherd, 2016: Zonal-mean circulation response to reduced air–sea momentum roughness. Quart. J. Roy. Meteor. Soc., 142, 26112622, https://doi.org/10.1002/qj.2850.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rivière, G., 2009: Effect of latitudinal variations in low-level baroclinicity on eddy life cycles and upper-tropospheric wave-breaking processes. J. Atmos. Sci., 66, 15691592, https://doi.org/10.1175/2008JAS2919.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schneider, E. K., 1981: On the amplitudes reached by baroclinically unstable disturbances. J. Atmos. Sci., 38, 21422149, https://doi.org/10.1175/1520-0469(1981)038<2142:OTARBB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schneider, T., and C. C. Walker, 2006: Self-organization of atmospheric macroturbulence into critical states of weak nonlinear eddy–eddy interactions. J. Atmos. Sci., 63, 15691586, https://doi.org/10.1175/JAS3699.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schneider, T., and C. C. Walker, 2008: Scaling laws and regime transitions of macroturbulence in dry atmospheres. J. Atmos. Sci., 65, 21532173, https://doi.org/10.1175/2007JAS2616.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shepherd, T. G., 2014: Atmospheric circulation as a source of uncertainty in climate change projections. Nat. Geosci., 7, 703708, https://doi.org/10.1038/ngeo2253.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stone, P. H., 1978: Baroclinic adjustment. J. Atmos. Sci., 35, 561571, https://doi.org/10.1175/1520-0469(1978)035<0561:BA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tailleux, R., 2013: Available potential energy density for a multicomponent Boussinesq fluid with arbitrary nonlinear equation of state. J. Fluid Mech., 735, 499518, https://doi.org/10.1017/jfm.2013.509.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, P. D., 1987: Large-scale dynamical response to differential heating: Statistical equilibrium states and amplitude vacillation. J. Atmos. Sci., 44, 12371248, https://doi.org/10.1175/1520-0469(1987)044<1237:LSDRTD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thorncroft, C. D., B. J. Hoskins, and M. E. McIntyre, 1993: Two paradigms of baroclinic wave life-cycle behaviour. Quart. J. Roy. Meteor. Soc., 119, 1755, https://doi.org/10.1002/qj.49711950903.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Voigt, A., and T. A. Shaw, 2015: Circulation response to warming shaped by radiative changes of clouds and water vapour. Nat. Geosci., 8, 102106, https://doi.org/10.1038/ngeo2345.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zappa, G., G. Masato, L. Shaffrey, T. Woollings, and K. Hodges, 2014: Linking Northern Hemisphere blocking and storm track biases in the CMIP5 climate models. Geophys. Res. Lett., 41, 135139, https://doi.org/10.1002/2013GL058480.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zappa, G., M. K. Hawcroft, L. Shaffrey, E. Black, and D. J. Brayshaw, 2015: Extratropical cyclones and the projected decline of winter Mediterranean precipitation in the CMIP5 models. Climate Dyn., 45, 17271738, https://doi.org/10.1007/s00382-014-2426-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Y., and P. H. Stone, 2011: Baroclinic adjustment in an atmosphere–ocean thermally coupled model: The role of the boundary layer processes. J. Atmos. Sci., 68, 27102730, https://doi.org/10.1175/JAS-D-11-078.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Y., X.-Q. Yang, Y. Nie, and G. Chen, 2012: Annular mode–like variation in a multilayer quasigeostrophic model. J. Atmos. Sci., 69, 29402958, https://doi.org/10.1175/JAS-D-11-0214.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zurita-Gotor, P., 2007: The relation between baroclinic adjustment and turbulent diffusion in the two-layer model. J. Atmos. Sci., 64, 12841300, https://doi.org/10.1175/JAS3886.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zurita-Gotor, P., and R. S. Lindzen, 2001: The equilibration of short Charney waves: Implications for potential vorticity homogenization in the extratropical troposphere. J. Atmos. Sci., 58, 34433462, https://doi.org/10.1175/1520-0469(2001)058<3443:TEOSCW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zurita-Gotor, P., and R. S. Lindzen, 2004: Baroclinic equilibration and the maintenance of the momentum balance. Part II: 3D results. J. Atmos. Sci., 61, 14831499, https://doi.org/10.1175/1520-0469(2004)061<1483:BEATMO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zurita-Gotor, P., and G. K. Vallis, 2009: Equilibration of baroclinic turbulence in primitive equations and quasigeostrophic models. J. Atmos. Sci., 66, 837863, https://doi.org/10.1175/2008JAS2848.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 492 116 5
PDF Downloads 273 101 5