Coherent Turbulence in the Boundary Layer of Hurricane Rita (2005) during an Eyewall Replacement Cycle

Stephen R. Guimond University of Maryland, Baltimore County, Baltimore, and NASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by Stephen R. Guimond in
Current site
Google Scholar
PubMed
Close
,
Jun A. Zhang University of Miami, Coral Gables, and NOAA/Hurricane Research Division, Miami, Florida

Search for other papers by Jun A. Zhang in
Current site
Google Scholar
PubMed
Close
,
Joseph W. Sapp Global Science and Technology, Inc., and NOAA/NESDIS/STAR, College Park, Maryland

Search for other papers by Joseph W. Sapp in
Current site
Google Scholar
PubMed
Close
, and
Stephen J. Frasier Microwave Remote Sensing Laboratory, University of Massachusetts Amherst, Amherst, Massachusetts

Search for other papers by Stephen J. Frasier in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The structure of coherent turbulence in an eyewall replacement cycle in Hurricane Rita (2005) is presented from novel airborne Doppler radar observations using the Imaging Wind and Rain Airborne Profiler (IWRAP). The IWRAP measurements and three-dimensional (3D) wind vector calculations at a grid spacing of 250 m in the horizontal and 30 m in the vertical reveal the ubiquitous presence of organized turbulent eddies in the lower levels of the storm. The data presented here, and the larger collection of IWRAP measurements, currently are the highest-resolution Doppler radar 3D wind vectors ever obtained in a hurricane over the open ocean. Coincident data from NOAA airborne radars, the Stepped Frequency Microwave Radiometer, and flight-level data help to place the IWRAP observations into context and provide independent validation. The typical characteristics of the turbulent eddies are the following: radial wavelengths of ~1–3 km (mean value is ~2 km), depths from the ocean surface up to flight level (~1.5 km), aspect ratio of ~1.3, and horizontal wind speed perturbations of 10–20 m s−1. The most intense eddy activity is located on the inner edge of the outer eyewall during the concentric eyewall stage with a shift to the inner eyewall during the merging stage. The evolving structure of the vertical wind shear is connected to this shift and together these characteristics have several similarities to boundary layer roll vortices. However, eddy momentum flux analysis reveals that high-momentum air is being transported upward, in contrast with roll vortices, with large positive values (~150 m2 s−2) found in the turbulent filaments. In the decaying inner eyewall, elevated tangential momentum is also being transported radially outward to the intensifying outer eyewall. These results indicate that the eddies may have connections to potential vorticity waves with possible modifications due to boundary layer shear instabilities.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Stephen R. Guimond, sguimond@umbc.edu

Abstract

The structure of coherent turbulence in an eyewall replacement cycle in Hurricane Rita (2005) is presented from novel airborne Doppler radar observations using the Imaging Wind and Rain Airborne Profiler (IWRAP). The IWRAP measurements and three-dimensional (3D) wind vector calculations at a grid spacing of 250 m in the horizontal and 30 m in the vertical reveal the ubiquitous presence of organized turbulent eddies in the lower levels of the storm. The data presented here, and the larger collection of IWRAP measurements, currently are the highest-resolution Doppler radar 3D wind vectors ever obtained in a hurricane over the open ocean. Coincident data from NOAA airborne radars, the Stepped Frequency Microwave Radiometer, and flight-level data help to place the IWRAP observations into context and provide independent validation. The typical characteristics of the turbulent eddies are the following: radial wavelengths of ~1–3 km (mean value is ~2 km), depths from the ocean surface up to flight level (~1.5 km), aspect ratio of ~1.3, and horizontal wind speed perturbations of 10–20 m s−1. The most intense eddy activity is located on the inner edge of the outer eyewall during the concentric eyewall stage with a shift to the inner eyewall during the merging stage. The evolving structure of the vertical wind shear is connected to this shift and together these characteristics have several similarities to boundary layer roll vortices. However, eddy momentum flux analysis reveals that high-momentum air is being transported upward, in contrast with roll vortices, with large positive values (~150 m2 s−2) found in the turbulent filaments. In the decaying inner eyewall, elevated tangential momentum is also being transported radially outward to the intensifying outer eyewall. These results indicate that the eddies may have connections to potential vorticity waves with possible modifications due to boundary layer shear instabilities.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Stephen R. Guimond, sguimond@umbc.edu
Save
  • Bell, M. M., and M. T. Montgomery, 2008: Observed structure, evolution, and potential intensity of category 5 Hurricane Isabel (2003) from 12 to 14 September. Mon. Wea. Rev., 136, 20232046, https://doi.org/10.1175/2007MWR1858.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bell, M. M., M. T. Montgomery, and W.-C. Lee, 2012: An axisymmetric view of concentric eyewall evolution in Hurricane Rita (2005). J. Atmos. Sci., 69, 24142432, https://doi.org/10.1175/JAS-D-11-0167.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Black, P. G., and Coauthors, 2007: Air–sea exchange in hurricanes: Synthesis of observations from the coupled boundary layer air–sea transfer experiment. Bull. Amer. Meteor. Soc., 88, 357374, https://doi.org/10.1175/BAMS-88-3-357.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., 2012: Effects of surface exchange coefficients and turbulence length scales on the intensity and structure of numerically simulated hurricanes. Mon. Wea. Rev., 140, 11251143, https://doi.org/10.1175/MWR-D-11-00231.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., and R. Rotunno, 2009: The maximum intensity of tropical cyclones in axisymmetric numerical model simulations. Mon. Wea. Rev., 137, 17701789, https://doi.org/10.1175/2008MWR2709.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Didlake, A. C. Jr., and R. A. Houze Jr., 2011: Kinematics of the secondary eyewall observed in Hurricane Rita (2005). J. Atmos. Sci., 68, 16201636, https://doi.org/10.1175/2011JAS3715.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1986: An air–sea interaction theory for tropical cyclones. Part I: Steady-state maintenance. J. Atmos. Sci., 43, 585604, https://doi.org/10.1175/1520-0469(1986)043<0585:AASITF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1995: Sensitivity of tropical cyclones to surface exchange coefficients and a revised steady-state model incorporating eye dynamics. J. Atmos. Sci., 52, 39693976, https://doi.org/10.1175/1520-0469(1995)052<3969:SOTCTS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fernandez, D. E., E. M. Kerr, A. Castells, J. R. Carswell, S. J. Frasier, P. S. Chang, P. G. Black, and F. D. Marks, 2005: IWRAP: The Imaging Wind and Rain Airborne Profiler for remote sensing of the ocean and the atmospheric boundary layer within tropical cyclones. IEEE Trans. Geosci. Remote Sens., 43, 17751787, https://doi.org/10.1109/TGRS.2005.851640.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Foster, R. C., 2005: Why rolls are prevalent in the hurricane boundary layer. J. Atmos. Sci., 62, 26472661, https://doi.org/10.1175/JAS3475.1.

  • Franklin, J. L., M. L. Black, and K. Valde, 2003: GPS dropwindsonde wind profiles in hurricanes and their operational implications. Wea. Forecasting, 18, 3244, https://doi.org/10.1175/1520-0434(2003)018<0032:GDWPIH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gall, R., J. Franklin, F. Marks, E. N. Rappaport, and F. Toepfer, 2013: The Hurricane Forecast Improvement Project. Bull. Amer. Meteor. Soc., 94, 329343, https://doi.org/10.1175/BAMS-D-12-00071.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gamache, J. F., 1997: Evaluation of a fully three-dimensional variational Doppler analysis technique. Preprints, 28th Conf. on Radar Meteorology, Austin, TX, Amer. Meteor. Soc., 422–423.

  • Gamache, J. F., F. D. Marks, and F. Roux, 1995: Comparison of three airborne Doppler sampling techniques with airborne in situ wind observations in Hurricane Gustav (1990). J. Atmos. Oceanic Technol., 12, 171181, https://doi.org/10.1175/1520-0426(1995)012<0171:COTADS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gao, K., and I. Ginis, 2016: On the equilibrium-state roll vortices and their effects in the hurricane boundary layer. J. Atmos. Sci., 73, 12051222, https://doi.org/10.1175/JAS-D-15-0089.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gao, K., I. Ginis, J. D. Doyle, and Y. Jin, 2017: Effects of boundary layer roll vortices on the development of an axisymmetric tropical cyclone. J. Atmos. Sci., 74, 27372758, https://doi.org/10.1175/JAS-D-16-0222.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guimond, S. R., L. Tian, G. M. Heymsfield, and S. J. Frasier, 2014: Wind retrieval algorithms for the IWRAP and HIWRAP airborne Doppler radars with applications to hurricanes. J. Atmos. Oceanic Technol., 31, 11891215, https://doi.org/10.1175/JTECH-D-13-00140.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guinn, T. A., and W. H. Schubert, 1993: Hurricane spiral bands. J. Atmos. Sci., 50, 33803403, https://doi.org/10.1175/1520-0469(1993)050<3380:HSB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kepert, J. D., 2012: Choosing a boundary layer parameterization for tropical cyclone modeling. Mon. Wea. Rev., 140, 14271445, https://doi.org/10.1175/MWR-D-11-00217.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klotz, B. W., and E. W. Uhlhorn, 2014: Improved stepped frequency microwave radiometer tropical cyclone surface winds in heavy precipitation. J. Atmos. Oceanic Technol., 31, 23922408, https://doi.org/10.1175/JTECH-D-14-00028.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knabb, R. D., D. P. Brown, and J. R. Rhome, 2006: Tropical cyclone report: Hurricane Rita 18–26 September 2005. National Hurricane Center Rep., 33 pp., http://www.nhc.noaa.gov/data/tcr/AL182005_Rita.pdf.

  • Kosiba, K. A., and J. Wurman, 2014: Finescale dual-Doppler analysis of hurricane boundary layer structures in Hurricane Frances (2004) at landfall. Mon. Wea. Rev., 142, 18741891, https://doi.org/10.1175/MWR-D-13-00178.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, W.-C., P. Dodge, F. D. Marks, and P. H. Hildebrand, 1994: Mapping of airborne Doppler radar data. J. Atmos. Oceanic Technol., 11, 572578, https://doi.org/10.1175/1520-0426(1994)011<0572:MOADRD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, X., J. A. Zhang, X. Yang, W. G. Pichel, M. DeMaria, D. Long, and Z. Li, 2013: Tropical cyclone morphology from spaceborne synthetic aperture radar. Bull. Amer. Meteor. Soc., 94, 215230, https://doi.org/10.1175/BAMS-D-11-00211.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lorsolo, S., J. L. Schroeder, P. Dodge, and F. D. Marks, 2008: An observational study of hurricane boundary layer small-scale coherent structures. Mon. Wea. Rev., 136, 28712893, https://doi.org/10.1175/2008MWR2273.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., and R. J. Kallenbach, 1997: A theory for vortex Rossby waves and its application to spiral bands and intensity changes in hurricanes. Quart. J. Roy. Meteor. Soc., 123, 435465, https://doi.org/10.1002/qj.49712353810.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morrison, I., S. Businger, F. Marks, P. Dodge, and J. A. Businger, 2005: An observational case for the prevalence of roll vortices in the hurricane boundary layer. J. Atmos. Sci., 62, 26622673, https://doi.org/10.1175/JAS3508.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nakanishi, M., and H. Niino, 2012: Large-eddy simulation of roll vortices in a hurricane boundary layer. J. Atmos. Sci., 69, 35583575, https://doi.org/10.1175/JAS-D-11-0237.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nolan, D. S., 2005: Instabilities in hurricane-like boundary layers. Dyn. Atmos. Oceans, 40, 209236, https://doi.org/10.1016/j.dynatmoce.2005.03.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reasor, P. D., M. D. Eastin, and J. F. Gamache, 2009: Rapidly intensifying Hurricane Guillermo (1997). Part I: Low-wavenumber structure and evolution. Mon. Wea. Rev., 137, 603631, https://doi.org/10.1175/2008MWR2487.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rotunno, R., and G. H. Bryan, 2012: Effects of parameterized diffusion on simulated hurricanes. J. Atmos. Sci., 69, 22842299, https://doi.org/10.1175/JAS-D-11-0204.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sapp, J. W., S. J. Frasier, J. Dvorsky, P. S. Chang, and Z. Jelenak, 2013: Airborne dual- polarization observations of the sea surface NRCS at C-band in high winds. IEEE Geosci. Remote Sens. Lett., 10, 726730, https://doi.org/10.1109/LGRS.2012.2220118.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sapp, J. W., S. O. Alsweiss, Z. Jelenak, P. S. Chang, S. J. Frasier, and J. Carswell, 2016: Airborne co-polarization and cross-polarization observations of the ocean-surface NRCS at C-band. IEEE Trans. Geosci. Remote Sens., 54, 59755992, https://doi.org/10.1109/TGRS.2016.2578048.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schubert, W. H., M. T. Montgomery, R. K. Taft, T. A. Guinn, S. R. Fulton, J. P. Kossin, and J. P. Edwards, 1999: Polygonal eyewalls, asymmetric eye contraction, and potential vorticity mixing in hurricanes. J. Atmos. Sci., 56, 11971223, https://doi.org/10.1175/1520-0469(1999)056<1197:PEAECA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, R. K., and M. T. Montgomery, 2010: Hurricane boundary-layer theory. Quart. J. Roy. Meteor. Soc., 136, 16651670, https://doi.org/10.1002/qj.679.

  • Uhlhorn, E. W., and P. G. Black, 2003: Verification of remotely sensed sea surface winds in hurricanes. J. Atmos. Oceanic Technol., 20, 99116, https://doi.org/10.1175/1520-0426(2003)020<0099:VORSSS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Uhlhorn, E. W., P. G. Black, J. L. Franklin, M. Goodberlet, J. Carswell, and A. S. Goldstein, 2007: Hurricane surface wind measurement from an operational stepped frequency microwave radiometer. Mon. Wea. Rev., 135, 30703085, https://doi.org/10.1175/MWR3454.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ulbrich, C. W., and P. B. Chilson, 1994: Effects of variations in precipitation size distribution and fallspeed law parameters on relations between mean Doppler fallspeed and reflectivity factor. J. Atmos. Oceanic Technol., 11, 16561663, https://doi.org/10.1175/1520-0426(1994)011<1656:EOVIPS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Willoughby, H. E., and M. B. Chelmow, 1982: Objective determination of hurricane tracks from aircraft observations. Mon. Wea. Rev., 110, 12981305, https://doi.org/10.1175/1520-0493(1982)110<1298:ODOHTF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wurman, J., and J. Winslow, 1998: Intense sub-kilometer boundary layer rolls in Hurricane Fran. Science, 280, 555557, https://doi.org/10.1126/science.280.5363.555.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, J. A., K. B. Katsaros, P. G. Black, S. Lehner, J. R. French, and W. M. Drennan, 2008: Effects of roll vortices on turbulent fluxes in the hurricane boundary layer. Bound.-Layer Meteor., 128, 173189, https://doi.org/10.1007/s10546-008-9281-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, J. A., F. D. Marks, M. T. Montgomery, and S. Lorsolo, 2011a: An estimation of turbulent characteristics in the low-level region of intense Hurricanes Allen (1980) and Hugo (1989). Mon. Wea. Rev., 139, 14471462, https://doi.org/10.1175/2010MWR3435.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, J. A., R. F. Rogers, D. S. Nolan, and F. D. Marks, 2011b: On the characteristic height scales of the hurricane boundary layer. Mon. Wea. Rev., 139, 25232535, https://doi.org/10.1175/MWR-D-10-05017.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, J. A., D. S. Nolan, R. F. Rogers, and V. Tallapragada, 2015: Evaluating the impact of improvements in the boundary layer parameterization on hurricane intensity and structure forecasts in HWRF. Mon. Wea. Rev., 143, 31363155, https://doi.org/10.1175/MWR-D-14-00339.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhu, P., 2008: Simulation and parameterization of the turbulent transport in the hurricane boundary layer by large eddies. J. Geophys. Res., 113, D17104, https://doi.org/10.1029/2007JD009643.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhu, P., K. Menelaou, and Z.-D. Zhu, 2014: Impact of subgrid-scale vertical turbulent mixing on eyewall asymmetric structures and mesovorticies of hurricanes. Quart. J. Roy. Meteor. Soc., 140, 416438, https://doi.org/10.1002/qj.2147.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 975 364 91
PDF Downloads 620 223 60