Observation of Quasi-2-Day Convective Disturbances in the Equatorial Indian Ocean during DYNAMO

Hungjui Yu Department of Atmospheric Sciences, National Taiwan University, Taipei, Taiwan

Search for other papers by Hungjui Yu in
Current site
Google Scholar
PubMed
Close
,
Richard H. Johnson Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado

Search for other papers by Richard H. Johnson in
Current site
Google Scholar
PubMed
Close
,
Paul E. Ciesielski Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado

Search for other papers by Paul E. Ciesielski in
Current site
Google Scholar
PubMed
Close
, and
Hung-Chi Kuo Department of Atmospheric Sciences, National Taiwan University, Taipei, Taiwan

Search for other papers by Hung-Chi Kuo in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This study examines the westward-propagating convective disturbances with quasi-2-day intervals of occurrence identified over Gan Island in the central Indian Ocean from mid- to late October 2011 during the Dynamics of the Madden–Julian Oscillation (DYNAMO) field campaign. Atmospheric sounding, satellite, and radar data are used to develop a composite of seven such disturbances. Composites and spectral analyses reveal that 1) the quasi-2-day convective events comprise westward-propagating diurnal convective disturbances with phase speeds of 10–12 m s−1 whose amplitudes are modulated on a quasi-2-day time scale on a zonal scale of ~1000 km near the longitudes of Gan; 2) the cloud life cycle of quasi-2-day convective disturbances shows a distinct pattern of tropical cloud population evolution—from shallow to deep to stratiform convection; 3) the time scales of mesoscale convective system development and boundary layer modulation play essential roles in determining the periodicity of the quasi-2-day convective events; and 4) in some of the quasi-2-day events there is evidence of counterpropagating (westward and eastward) cloud systems along the lines proposed by Yamada et al. Based on these findings, an interpretation is proposed for the mechanisms for the quasi-2-day disturbances observed during DYNAMO that combines concepts from prior studies of this phenomenon over the western Pacific and Indian Oceans.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Hung-Chi Kuo, kuo@as.ntu.edu.tw

This article is included in the DYNAMO/CINDY/AMIE/LASP: Processes, Dynamics, and Prediction of MJO Initiation special collection.

Abstract

This study examines the westward-propagating convective disturbances with quasi-2-day intervals of occurrence identified over Gan Island in the central Indian Ocean from mid- to late October 2011 during the Dynamics of the Madden–Julian Oscillation (DYNAMO) field campaign. Atmospheric sounding, satellite, and radar data are used to develop a composite of seven such disturbances. Composites and spectral analyses reveal that 1) the quasi-2-day convective events comprise westward-propagating diurnal convective disturbances with phase speeds of 10–12 m s−1 whose amplitudes are modulated on a quasi-2-day time scale on a zonal scale of ~1000 km near the longitudes of Gan; 2) the cloud life cycle of quasi-2-day convective disturbances shows a distinct pattern of tropical cloud population evolution—from shallow to deep to stratiform convection; 3) the time scales of mesoscale convective system development and boundary layer modulation play essential roles in determining the periodicity of the quasi-2-day convective events; and 4) in some of the quasi-2-day events there is evidence of counterpropagating (westward and eastward) cloud systems along the lines proposed by Yamada et al. Based on these findings, an interpretation is proposed for the mechanisms for the quasi-2-day disturbances observed during DYNAMO that combines concepts from prior studies of this phenomenon over the western Pacific and Indian Oceans.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Hung-Chi Kuo, kuo@as.ntu.edu.tw

This article is included in the DYNAMO/CINDY/AMIE/LASP: Processes, Dynamics, and Prediction of MJO Initiation special collection.

Save
  • Albrecht, B. A., A. K. Betts, W. H. Schubert, and S. K. Cox, 1979: A model for the thermodynamic structure of the trade-wind boundary layer. J. Atmos. Sci., 36, 7389, https://doi.org/10.1175/1520-0469(1979)036<0073:MOTTSO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, S. S., and R. A. Houze, 1997: Diurnal variation and life-cycle of deep convective systems over the tropical Pacific warm pool. Quart. J. Roy. Meteor. Soc., 123, 357388, https://doi.org/10.1002/qj.49712353806.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, S. S., R. A. Houze, and B. E. Mapes, 1996: Multiscale variability of deep convection in relation to large-scale circulation in TOGA COARE. J. Atmos. Sci., 53, 13801409, https://doi.org/10.1175/1520-0469(1996)053<1380:MVODCI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ciesielski, P. E., and Coauthors, 2014: Quality-controlled upper-air sounding dataset for DYNAMO/CINDY/AMIE: Development and corrections. J. Atmos. Oceanic Technol., 31, 741764, https://doi.org/10.1175/JTECH-D-13-00165.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ciesielski, P. E., R. Johnson, X. Jiang, Y. Zhang, and S. Xie, 2017: Relationships between radiation, clouds, and convection during DYNAMO. J. Geophys. Res. Atmos., 122, 25292548, https://doi.org/10.1002/2016JD025965.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cifelli, R., and S. A. Rutledge, 1994: Vertical motion structure in Maritime Continent mesoscale convective systems: Results from a 50-MHz profiler. J. Atmos. Sci., 51, 26312652, https://doi.org/10.1175/1520-0469(1994)051<2631:VMSIMC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clayson, C. A., B. Strahl, and J. Schrage, 2002: 2–3-day convective variability in the tropical western Pacific. Mon. Wea. Rev., 130, 529548, https://doi.org/10.1175/1520-0493(2002)130<0529:DCVITT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Duchon, C. E., 1979: Lanczos filtering in one and two dimensions. J. Appl. Meteor., 18, 10161022, https://doi.org/10.1175/1520-0450(1979)018<1016:LFIOAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feng, Z., S. A. McFarlane, C. Schumacher, S. Ellis, J. Comstock, and N. Bharadwaj, 2014: Constructing a merged cloud–precipitation radar dataset for tropical convective clouds during the DYNAMO/AMIE experiment at Addu Atoll. J. Atmos. Oceanic Technol., 31, 10211042, https://doi.org/10.1175/JTECH-D-13-00132.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fu, Q., and K. N. Liou, 1992: On the correlated k-distribution method for radiative transfer in nonhomogeneous atmospheres. J. Atmos. Sci., 49, 21392156, https://doi.org/10.1175/1520-0469(1992)049<2139:OTCDMF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gallus, W. A., and R. H. Johnson, 1991: Heat and moisture budgets of an intense midlatitude squall line. J. Atmos. Sci., 48, 122146, https://doi.org/10.1175/1520-0469(1991)048<0122:HAMBOA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gray, W. M., and R. W. Jacobson, 1977: Diurnal variation of deep cumulus convection. Mon. Wea. Rev., 105, 11711188, https://doi.org/10.1175/1520-0493(1977)105<1171:DVODCC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haertel, P. T., and R. H. Johnson, 1998: Two-day disturbances in the equatorial western Pacific. Quart. J. Roy. Meteor. Soc., 124, 615636, https://doi.org/10.1002/qj.49712454611.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haertel, P. T., and G. N. Kiladis, 2004: Dynamics of 2-day equatorial waves. J. Atmos. Sci., 61, 27072721, https://doi.org/10.1175/JAS3352.1.

  • Hendon, H. H., and B. Liebmann, 1994: Organization of convection within the Madden-Julian oscillation. J. Geophys. Res., 99, 80738083, https://doi.org/10.1029/94JD00045.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houze, R. A., 1989: Observed structure of mesoscale convective systems and implications for large-scale heating. Quart. J. Roy. Meteor. Soc., 115, 425461, https://doi.org/10.1002/qj.49711548702.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houze, R. A., 1997: Stratiform precipitation in regions of convection: A meteorological paradox? Bull. Amer. Meteor. Soc., 78, 21792196, https://doi.org/10.1175/1520-0477(1997)078<2179:SPIROC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houze, R. A., S. S. Chen, D. E. Kingsmill, Y. Serra, and S. E. Yuter, 2000: Convection over the Pacific warm pool in relation to the atmospheric Kelvin–Rossby wave. J. Atmos. Sci., 57, 30583089, https://doi.org/10.1175/1520-0469(2000)057<3058:COTPWP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, R. H., 1984: Partitioning tropical heat and moisture budgets into cumulus and mesoscale components: Implications for cumulus parameterization. Mon. Wea. Rev., 112, 15901601, https://doi.org/10.1175/1520-0493(1984)112<1590:PTHAMB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, R. H., and P. E. Ciesielski, 2013: Structure and properties of Madden–Julian oscillations deduced from DYNAMO sounding arrays. J. Atmos. Sci., 70, 31573179, https://doi.org/10.1175/JAS-D-13-065.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, R. H., and P. E. Ciesielski, 2017: Multiscale variability of the atmospheric boundary layer during DYNAMO. J. Atmos. Sci., 74, 40034021, https://doi.org/10.1175/JAS-D-17-0182.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, R. H., W. A. Gallus, and M. D. Vescio, 1990: Near-tropopause vertical motion within the trailing stratiform region of a midlatitude squall line. J. Atmos. Sci., 47, 22002210, https://doi.org/10.1175/1520-0469(1990)047<2200:NTVMWT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, R. H., P. E. Ciesielski, and K. A. Hart, 1996: Tropical inversions near the 0°C level. J. Atmos. Sci., 53, 18381855, https://doi.org/10.1175/1520-0469(1996)053<1838:TINTL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, R. H., T. M. Rickenbach, S. A. Rutledge, P. E. Ciesielski, and W. H. Schubert, 1999: Trimodal characteristics of tropical convection. J. Climate, 12, 23972418, https://doi.org/10.1175/1520-0442(1999)012<2397:TCOTC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, R. H., P. E. Ciesielski, J. H. Ruppert, and M. Katsumata, 2015: Sounding-based thermodynamic budgets for DYNAMO. J. Atmos. Sci., 72, 598622, https://doi.org/10.1175/JAS-D-14-0202.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kikuchi, K., and Y. N. Takayabu, 2004: The development of organized convection associated with the MJO during TOGA COARE IOP: Trimodal characteristics. Geophys. Res. Lett., 31, L10101, https://doi.org/10.1029/2004GL019601.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kiladis, G. N., M. C. Wheeler, P. T. Haertel, K. H. Straub, and P. E. Roundy, 2009: Convectively coupled equatorial waves. Rev. Geophys., 47, RG2003, https://doi.org/10.1029/2008RG000266.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kubota, H., K. Yoneyama, J.-I. Hamada, P. Wu, A. Sudaryanto, and I. B. Wahyono, 2015: Role of Maritime Continent convection during the preconditioning stage of the Madden–Julian oscillation observed in CINDY2011/DYNAMO. J. Meteor. Soc. Japan., 93A, 101114, https://doi.org/10.2151/jmsj.2015-050.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lau, K. M., T. Nakazawa, and C. H. Sui, 1991: Observations of cloud cluster hierarchies over the tropical western Pacific. J. Geophys. Res., 96, 31973208, https://doi.org/10.1029/90JD01830.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, F., and B. Wang, 2012: A model for the interaction between 2-day waves and moist Kelvin waves. J. Atmos. Sci., 69, 611625, https://doi.org/10.1175/JAS-D-11-0116.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mapes, B., S. Tulich, J. Lin, and P. Zuidema, 2006: The mesoscale convection life cycle: Building block or prototype for large-scale tropical waves? Dyn. Atmos. Oceans, 42, 329, https://doi.org/10.1016/j.dynatmoce.2006.03.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mather, J. H., S. A. McFarlane, M. A. Miller, and K. L. Johnson, 2007: Cloud properties and associated radiative heating rates in the tropical western Pacific. J. Geophys. Res., 112, D05201, https://doi.org/10.1029/2006JD007555.

    • Search Google Scholar
    • Export Citation
  • Nakazawa, T., 1988: Tropical super clusters within intraseasonal variations over the western Pacific. J. Meteor. Soc. Japan., 66, 823839, https://doi.org/10.2151/jmsj1965.66.6_823.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nakazawa, T., 1995: Intraseasonal oscillations during the TOGA-COARE IOP. J. Meteor. Soc. Japan., 73, 305319, https://doi.org/10.2151/jmsj1965.73.2B_305.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Randall, D. A., Harshvardhan, and D. A. Dazlich, 1991: Diurnal variability of the hydrologic cycle in a general circulation model. J. Atmos. Sci., 48, 4062, https://doi.org/10.1175/1520-0469(1991)048<0040:DVOTHC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sarachik, E. S., 1985: A simple theory for the vertical structure of the tropical atmosphere. Pure Appl. Geophys., 123, 261271, https://doi.org/10.1007/BF00877022.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schubert, W. H., P. E. Ciesielski, C. Lu, and R. H. Johnson, 1995: Dynamical adjustment of the trade wind inversion layer. J. Atmos. Sci., 52, 29412952, https://doi.org/10.1175/1520-0469(1995)052<2941:DAOTTW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Takayabu, Y. N., 1994a: Large-scale cloud disturbances associated with equatorial waves. Part I: Spectral features of the cloud disturbances. J. Meteor. Soc. Japan., 72, 433449, https://doi.org/10.2151/jmsj1965.72.3_433.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Takayabu, Y. N., 1994b: Large-scale cloud disturbances associated with equatorial waves. Part II: Westward-propagating inertio-gravity waves. J. Meteor. Soc. Japan., 72, 451465, https://doi.org/10.2151/jmsj1965.72.3_451.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Takayabu, Y. N., K. Lau, and C. Sui, 1996: Observation of a quasi-2-day wave during TOGA COARE. Mon. Wea. Rev., 124, 18921913, https://doi.org/10.1175/1520-0493(1996)124<1892:OOAQDW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thomson, R. E., and W. J. Emery, 2014: Data Analysis Methods in Physical Oceanography. 3rd ed. Elsevier, 728 pp.

  • TRMM, 2011: TRMM (TMPA) rainfall estimate L3 3 hour 0.25 degree × 0.25 degree V7. Goddard Earth Sciences Data and Information Services Center, accessed 16 September 2014, https://disc.gsfc.nasa.gov/datacollection/TRMM_3B42_7.html.

  • UCAR/NCAR, 2012: Meteosat-7 IR (Channel 8) calibrated data in NetCDF format, version 1.0. UCAR/NCAR Earth Observing Laboratory, accessed 22 October 2014. http://data.eol.ucar.edu/dataset/347.027.

  • Uyeda, H., and Coauthors, 1995: Doppler radar observations on the structure and characteristics of tropical clouds during the TOGA-COARE IOP in Manus, Papua New Guinea. J. Meteor. Soc. Japan., 73, 415426, https://doi.org/10.2151/jmsj1965.73.2B_415.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Webster, P. J., and G. L. Stephens, 1980: Tropical upper-tropospheric extended clouds: Inferences from winter MONEX. J. Atmos. Sci., 37, 15211541, https://doi.org/10.1175/1520-0469-37.7.1521.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wheeler, M., and G. N. Kiladis, 1999: Convectively coupled equatorial waves: Analysis of clouds and temperature in the wavenumber–frequency domain. J. Atmos. Sci., 56, 374399, https://doi.org/10.1175/1520-0469(1999)056<0374:CCEWAO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wheeler, M., G. N. Kiladis, and P. J. Webster, 2000: Large-scale dynamical fields associated with convectively coupled equatorial waves. J. Atmos. Sci., 57, 613640, https://doi.org/10.1175/1520-0469(2000)057<0613:LSDFAW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, S., R. T. Cederwall, and M. Zhang, 2004: Developing long-term single-column model/cloud system–resolving model forcing data using numerical weather prediction products constrained by surface and top of the atmosphere observations. J. Geophys. Res., 109, D01104, https://doi.org/10.1029/2003JD004045.

    • Search Google Scholar
    • Export Citation
  • Xu, W., and S. A. Rutledge, 2014: Convective characteristics of the Madden–Julian oscillation over the central Indian Ocean observed by shipborne radar during DYNAMO. J. Atmos. Sci., 71, 28592877, https://doi.org/10.1175/JAS-D-13-0372.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yamada, H., K. Yoneyama, M. Katsumata, and R. Shirooka, 2010: Observations of a super cloud cluster accompanied by synoptic-scale eastward-propagating precipitating systems over the Indian Ocean. J. Atmos. Sci., 67, 14561473, https://doi.org/10.1175/2009JAS3151.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yanai, M., S. Esbensen, and J. Chu, 1973: Determination of bulk properties of tropical cloud clusters from large-scale heat and moisture budgets. J. Atmos. Sci., 30, 611627, https://doi.org/10.1175/1520-0469(1973)030<0611:DOBPOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yanase, A., K. Yasunaga, and H. Masunaga, 2017: Relationship between the direction of diurnal rainfall migration and the ambient wind over the Southern Sumatra Island. Earth Space Sci., 4, 117127, https://doi.org/10.1002/2016EA000181.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yoneyama, K., and Coauthors, 2008: Mismo field experiment in the equatorial Indian Ocean. Bull. Amer. Meteor. Soc., 89, 18891903, https://doi.org/10.1175/2008BAMS2519.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yoneyama, K., C. Zhang, and C. N. Long, 2013: Tracking pulses of the Madden–Julian oscillation. Bull. Amer. Meteor. Soc., 94, 18711891, https://doi.org/10.1175/BAMS-D-12-00157.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, C., and K. Yoneyama, 2017: CINDY/DYNAMO field campaign: Advancing our understanding of MJO initiation. The Global Monsoon System: Research and Forecast, 3rd ed. C.-P. Change et al., Eds., World Scientific Series on Asia-Pacific Weather and Climate, Vol. 9, 339–348, https://doi.org/10.1142/9789813200913_0027.

    • Crossref
    • Export Citation
  • Zhang, M. H., and J. L. Lin, 1997: Constrained variational analysis of sounding data based on column-integrated budgets of mass, heat, moisture, and momentum: Approach and application to ARM measurements. J. Atmos. Sci., 54, 15031524, https://doi.org/10.1175/1520-0469(1997)054<1503:CVAOSD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, M. H., J. L. Lin, R. T. Cederwall, J. J. Yio, and S. C. Xie, 2001: Objective analysis of ARM IOP data: Method and sensitivity. Mon. Wea. Rev., 129, 295311, https://doi.org/10.1175/1520-0493(2001)129<0295:OAOAID>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zipser, E. J., 1977: Mesoscale and convective–scale downdrafts as distinct components of squall-line structure. Mon. Wea. Rev., 105, 15681589, https://doi.org/10.1175/1520-0493(1977)105<1568:MACDAD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zuluaga, M. D., and R. A. Houze, 2013: Evolution of the population of precipitating convective systems over the equatorial Indian Ocean in active phases of the Madden–Julian oscillation. J. Atmos. Sci., 70, 27132725, https://doi.org/10.1175/JAS-D-12-0311.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1367 603 23
PDF Downloads 194 67 14