Multilevel Tower Observations of Vertical Eddy Diffusivity and Mixing Length in the Tropical Cyclone Boundary Layer during Landfalls

Jie Tang Shanghai Typhoon Institute, CMA, Shanghai, China

Search for other papers by Jie Tang in
Current site
Google Scholar
PubMed
Close
,
Jun A. Zhang NOAA/Atlantic Oceanographic and Meteorological Laboratory/Hurricane Research Division, and Cooperative Institute for Marine and Atmospheric Studies, University of Miami, Miami, Florida

Search for other papers by Jun A. Zhang in
Current site
Google Scholar
PubMed
Close
,
Sim D. Aberson NOAA/Atlantic Oceanographic and Meteorological Laboratory/Hurricane Research Division, Miami, Florida

Search for other papers by Sim D. Aberson in
Current site
Google Scholar
PubMed
Close
,
Frank D. Marks NOAA/Atlantic Oceanographic and Meteorological Laboratory/Hurricane Research Division, Miami, Florida

Search for other papers by Frank D. Marks in
Current site
Google Scholar
PubMed
Close
, and
Xiaotu Lei Shanghai Typhoon Institute, CMA, Shanghai, China

Search for other papers by Xiaotu Lei in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This study analyzes the fast-response (20 Hz) wind data collected by a multilevel tower during the landfalls of Tropical Storm Lionrock (1006), Typhoon Fanapi (1011), and Typhoon Megi (1015) in 2010. Turbulent momentum fluxes are calculated using the standard eddy-correlation method. Vertical eddy diffusivity Km and mixing length are estimated using the directly measured momentum fluxes and mean-wind profiles. It is found that the momentum flux increases with wind speed at all four levels. The eddy diffusivity calculated using the direct-flux method is compared to that using a theoretical method in which the vertical eddy diffusivity is formulated as a linear function of the friction velocity and height. It is found that below ~60 m, Km can be approximately parameterized using this theoretical method, though this method overestimates Km for higher altitude, indicating that the surface-layer depth is close to 60 m in the tropical cyclones studied here. It is also found that Km at each level varies with wind direction during landfalls: Km estimated based on observations with landward fetch is significantly larger than that estimated using data with seaward fetch. This result suggests that different parameterizations of Km should be used in the boundary layer schemes of numerical models forecasting tropical cyclones over land versus over the ocean.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dr. Jun Zhang, jun.zhang@noaa.gov

Abstract

This study analyzes the fast-response (20 Hz) wind data collected by a multilevel tower during the landfalls of Tropical Storm Lionrock (1006), Typhoon Fanapi (1011), and Typhoon Megi (1015) in 2010. Turbulent momentum fluxes are calculated using the standard eddy-correlation method. Vertical eddy diffusivity Km and mixing length are estimated using the directly measured momentum fluxes and mean-wind profiles. It is found that the momentum flux increases with wind speed at all four levels. The eddy diffusivity calculated using the direct-flux method is compared to that using a theoretical method in which the vertical eddy diffusivity is formulated as a linear function of the friction velocity and height. It is found that below ~60 m, Km can be approximately parameterized using this theoretical method, though this method overestimates Km for higher altitude, indicating that the surface-layer depth is close to 60 m in the tropical cyclones studied here. It is also found that Km at each level varies with wind direction during landfalls: Km estimated based on observations with landward fetch is significantly larger than that estimated using data with seaward fetch. This result suggests that different parameterizations of Km should be used in the boundary layer schemes of numerical models forecasting tropical cyclones over land versus over the ocean.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dr. Jun Zhang, jun.zhang@noaa.gov
Save
  • Banner, M. L., W. Chen, E. J. Walsh, J. B. Jensen, S. Lee, and C. Fandry, 1999: The Southern Ocean Waves Experiment. Part I: Overview and mean results. J. Phys. Oceanogr., 29, 21302145, https://doi.org/10.1175/1520-0485(1999)029<2130:TSOWEP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Black, P. G., and Coauthors, 2007: Air–sea exchange in hurricanes: Synthesis of observations from the Coupled Boundary Layer Air–Sea Transfer Experiment. Bull. Amer. Meteor. Soc., 88, 357374, https://doi.org/10.1175/BAMS-88-3-357.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blackadar, A. K., 1962: The vertical distribution of wind and turbulent exchange in a neutral atmosphere. J. Geophys. Res., 67, 30953102, https://doi.org/10.1029/JZ067i008p03095.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., 2012: Effects of surface exchange coefficients and turbulence length scales on the intensity and structure of numerically simulated hurricanes. Mon. Wea. Rev., 140, 11251143, https://doi.org/10.1175/MWR-D-11-00231.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bu, Y. P., R. G. Fovell, and K. L. Corbosiero, 2017: The influences of boundary layer vertical mixing and cloud-radiative forcing on tropical cyclone size. J. Atmos. Sci., 74, 12731292, https://doi.org/10.1175/JAS-D-16-0231.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donelan, M. A., W. M. Drennan, and K. B. Katsaros, 1997: The air–sea momentum flux in conditions of wind sea and swell. J. Phys. Oceanogr., 27, 20872099, https://doi.org/10.1175/1520-0485(1997)027<2087:TASMFI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Drennan, W. M., J. A. Zhang, J. R. French, C. McCormick, and P. G. Black, 2007: Turbulent fluxes in the hurricane boundary layer. Part II: Latent heat flux. J. Atmos. Sci., 64, 11031115, https://doi.org/10.1175/JAS3889.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1995: Sensitivity of tropical cyclones to surface exchange coefficients and a revised steady-state model incorporating eye dynamics. J. Atmos. Sci., 52, 39693976, https://doi.org/10.1175/1520-0469(1995)052<3969:SOTCTS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fairall, C. W., E. F. Bradley, J. E. Hare, A. A. Grachev, and J. B. Edson, 2003: Bulk parameterization of air–sea fluxes: Updates and verification for the COARE algorithm. J. Climate, 16, 571591, https://doi.org/10.1175/1520-0442(2003)016<0571:BPOASF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • French, J. R., W. M. Drennan, J. A. Zhang, and P. G. Black, 2007: Turbulent fluxes in the hurricane boundary layer. Part I: Momentum flux. J. Atmos. Sci., 64, 10891102, https://doi.org/10.1175/JAS3887.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grant, A. L. M., 1992: The structure of turbulence in the near-neutral atmospheric boundary layer. J. Atmos. Sci., 49, 226239, https://doi.org/10.1175/1520-0469(1992)049<0226:TSOTIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Katz, J., and P. Zhu, 2017: Evaluation of surface layer flux parameterizations using in-situ observations. Atmos. Res., 194, 150163, https://doi.org/10.1016/j.atmosres.2017.04.025.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kepert, J. D., 2012: Choosing a boundary layer parameterization for tropical cyclone modeling. Mon. Wea. Rev., 140, 14271445, https://doi.org/10.1175/MWR-D-11-00217.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kosiba, K. A., and J. Wurman, 2014: Finescale dual-Doppler analysis of hurricane boundary layer structures in Hurricane Frances (2004) at landfall. Mon. Wea. Rev., 142, 18741891, https://doi.org/10.1175/MWR-D-13-00178.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lorsolo, S., J. A. Zhang, F. D. Marks, and J. Gamache, 2010: Estimation and mapping of hurricane turbulent energy using airborne Doppler measurements. Mon. Wea. Rev., 138, 36563670, https://doi.org/10.1175/2010MWR3183.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Louis, J. F., 1979: A parametric model of vertical eddy fluxes in the atmosphere. Bound.-Layer Meteor., 17, 187202, https://doi.org/10.1007/BF00117978.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mahrt, L., 2000: Surface heterogeneity and vertical structure of the boundary layer. Bound.-Layer Meteor., 96, 3362, https://doi.org/10.1023/A:1002482332477.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ming, J., J. A. Zhang, and R. F. Rogers, 2015: Typhoon kinematic and thermodynamic boundary layer structure from dropsonde composites. J. Geophys. Res. Atmos., 120, 31583172, https://doi.org/10.1002/2014JD022640.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Monin, A. S., and A. M. Obukhov, 1954: Basic laws of turbulent mixing in the surface layer of the atmosphere. Tr. Geofiz. Inst., Akad. Nauk SSSR, 24, 163187.

    • Search Google Scholar
    • Export Citation
  • Moss, M. S., 1978: Low-level turbulence structure in the vicinity of a hurricane. Mon. Wea. Rev., 106, 841849, https://doi.org/10.1175/1520-0493(1978)106<0841:LLTSIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nicholls, S., and C. J. Readings, 1979: Aircraft observations of the structure of the lower boundary layer over the sea. Quart. J. Roy. Meteor. Soc., 105, 785802, https://doi.org/10.1002/qj.49710544604.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Potter, H., H. C. Graber, N. J. Williams, C. O. Collins, R. J. Ramos, and W. M. Drennan, 2015: In situ measurements of momentum fluxes in typhoons. J. Atmos. Sci., 72, 104118, https://doi.org/10.1175/JAS-D-14-0025.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Powell, M. D., P. J. Vickery, and T. A. Reinhold, 2003: Reduced drag coefficient for high wind speeds in tropical cyclones. Nature, 422, 279283, https://doi.org/10.1038/nature01481.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stull, R. B., 1988: An Introduction to Boundary Layer Meteorology. Atmospheric and Oceanographic Sciences Library, Vol. 13, Kluwer Academic, 670 pp., https://doi.org/10.1007/978-94-009-3027-8.

    • Crossref
    • Export Citation
  • Tang, J., D. Byrne, J. A. Zhang, Y. Wang, X. Lei, D. Wu, P. Fang, and B. Zhao, 2015: Horizontal transition of turbulent cascade in the near-surface layer of tropical cyclones. J. Atmos. Sci., 72, 49154925, https://doi.org/10.1175/JAS-D-14-0373.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, B., A. G. Chowdhury, and F. J. Masters, 2008: Hurricane wind power spectra, cospectra, and integral length scales. Bound.-Layer Meteor., 129, 411430, https://doi.org/10.1007/s10546-008-9316-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, F., and Z. Pu, 2017: Effects of vertical eddy diffusivity parameterization on the evolution of landfalling hurricanes. J. Atmos. Sci., 74, 18791905, https://doi.org/10.1175/JAS-D-16-0214.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, J. A., 2010: Estimation of dissipative heating using low-level in situ aircraft observations in the hurricane boundary layer. J. Atmos. Sci., 67, 18531862, https://doi.org/10.1175/2010JAS3397.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, J. A., and W. M. Drennan, 2012: An observational study of vertical eddy diffusivity in the hurricane boundary layer. J. Atmos. Sci., 69, 32233236, https://doi.org/10.1175/JAS-D-11-0348.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, J. A., and F. D. Marks, 2015: Effects of horizontal eddy diffusivity on tropical cyclone intensity change and structure in idealized three-dimensional numerical simulations. Mon. Wea. Rev., 143, 39813995, https://doi.org/10.1175/MWR-D-14-00341.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, J. A., W. M. Drennan, J. French, and P. G. Black, 2009: Turbulence structure of the hurricane boundary layer between the outer rainbands. J. Atmos. Sci., 66, 24552467, https://doi.org/10.1175/2009JAS2954.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, J. A., F. D. Marks, M. T. Montgomery, and S. Lorsolo, 2011a: An estimation of turbulent characteristics in the low-level region of intense Hurricanes Allen (1980) and Hugo (1989). Mon. Wea. Rev., 139, 14471462, https://doi.org/10.1175/2010MWR3435.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, J. A., P. Zhu, F. J. Masters, R. F. Rogers, and F. D. Marks, 2011b: On momentum transport and dissipative heating during hurricane landfalls. J. Atmos. Sci., 68, 13971404, https://doi.org/10.1175/JAS-D-10-05018.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, J. A., D. S. Nolan, R. F. Rogers, and V. Tallapragada, 2015: Evaluating the impact of improvements in the boundary layer parameterization on hurricane intensity and structure forecasts in HWRF. Mon. Wea. Rev., 143, 31363155, https://doi.org/10.1175/MWR-D-14-00339.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, J. A., R. F. Rogers, and V. Tallapragada, 2017: Impact of parameterized boundary layer structure on tropical cyclone rapid intensification forecasts in HWRF. Mon. Wea. Rev., 145, 14131426, https://doi.org/10.1175/MWR-D-16-0129.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhu, P., J. A. Zhang, and F. J. Masters, 2010: Wavelet analyses of turbulence in the hurricane surface layer during landfalls. J. Atmos. Sci., 67, 37933805, https://doi.org/10.1175/2010JAS3437.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 447 211 21
PDF Downloads 315 109 8