A Phenomenological Paradigm for Midtropospheric Cyclogenesis in the Indian Summer Monsoon

Ayantika Dey Choudhury Centre for Climate Change Research, Indian Institute of Tropical Meteorology, Pune, India

Search for other papers by Ayantika Dey Choudhury in
Current site
Google Scholar
PubMed
Close
,
R. Krishnan Centre for Climate Change Research, Indian Institute of Tropical Meteorology, Pune, India

Search for other papers by R. Krishnan in
Current site
Google Scholar
PubMed
Close
,
M. V. S. Ramarao Centre for Climate Change Research, Indian Institute of Tropical Meteorology, Pune, India

Search for other papers by M. V. S. Ramarao in
Current site
Google Scholar
PubMed
Close
,
R. Vellore Centre for Climate Change Research, Indian Institute of Tropical Meteorology, Pune, India

Search for other papers by R. Vellore in
Current site
Google Scholar
PubMed
Close
,
M. Singh Centre for Climate Change Research, Indian Institute of Tropical Meteorology, Pune, India

Search for other papers by M. Singh in
Current site
Google Scholar
PubMed
Close
, and
B. Mapes Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida

Search for other papers by B. Mapes in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Midtropospheric cyclones (MTCs) are a distinct class of synoptic disturbances, characterized by quasi-stationary cyclonic circulation in midtropospheric levels, which often produce heavy rainfall and floods over western India during the summer monsoon. This study presents a composite and diagnostic process study of long-lived (>5 days) midtropospheric cyclonic circulation events identified by the India Meteorological Department (IMD). Reanalysis data confirm earlier studies in revealing that the MTC composite has its strongest circulation in the midtroposphere. Lagged composites show that these events co-occur with broader-scale monsoon evolution, including larger synoptic-scale low pressure systems over the Bay of Bengal (BoB) and east coast, and the active phase of regional-scale poleward-propagating intraseasonal rain belts, with associated drying ahead (north) of the convectively active area. Diabatic heating composites, in particular the TRMM latent heating and Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2)-derived radiative cooling in the dry inland areas of southwest Asia north of the rain belt, are used to drive a nonlinear multilayer dynamical model in a forced-damped reconstruction of the global circulation. Results show that the midlevel circulation is largely attributable to top-heavy latent heating, indicative of the prevalence of stratiform-type precipitation in mesoscale convective systems in these moist, active larger-scale settings. Both the west coast and BoB latent heating are important, while the radiative cooling over southwest Asia plays a modest role in sharpening some of the simulated features. A conceptual model encapsulates the paradigm based on this composite and diagnostic modeling, a diabatic update of early theoretical studies that emphasized hydrodynamic flow instabilities.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JAS-D-17-0356.s1.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: R. Krishnan, krish@tropmet.res.in

Abstract

Midtropospheric cyclones (MTCs) are a distinct class of synoptic disturbances, characterized by quasi-stationary cyclonic circulation in midtropospheric levels, which often produce heavy rainfall and floods over western India during the summer monsoon. This study presents a composite and diagnostic process study of long-lived (>5 days) midtropospheric cyclonic circulation events identified by the India Meteorological Department (IMD). Reanalysis data confirm earlier studies in revealing that the MTC composite has its strongest circulation in the midtroposphere. Lagged composites show that these events co-occur with broader-scale monsoon evolution, including larger synoptic-scale low pressure systems over the Bay of Bengal (BoB) and east coast, and the active phase of regional-scale poleward-propagating intraseasonal rain belts, with associated drying ahead (north) of the convectively active area. Diabatic heating composites, in particular the TRMM latent heating and Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2)-derived radiative cooling in the dry inland areas of southwest Asia north of the rain belt, are used to drive a nonlinear multilayer dynamical model in a forced-damped reconstruction of the global circulation. Results show that the midlevel circulation is largely attributable to top-heavy latent heating, indicative of the prevalence of stratiform-type precipitation in mesoscale convective systems in these moist, active larger-scale settings. Both the west coast and BoB latent heating are important, while the radiative cooling over southwest Asia plays a modest role in sharpening some of the simulated features. A conceptual model encapsulates the paradigm based on this composite and diagnostic modeling, a diabatic update of early theoretical studies that emphasized hydrodynamic flow instabilities.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JAS-D-17-0356.s1.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: R. Krishnan, krish@tropmet.res.in

Supplementary Materials

    • Supplemental Materials (ZIP 3.73 MB)
Save
  • Ahmed, F., C. Schumacher, Z. Feng, and S. Hagos, 2016: A retrieval of tropical latent heating using the 3D structure of precipitation features. J. Appl. Meteor. Climatol., 55, 19651982, https://doi.org/10.1175/JAMC-D-15-0038.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bitan, A., and H. Saaroni, 1992: The horizontal and vertical extension of the Persian Gulf pressure trough. Int. J. Climatol., 12, 733747, https://doi.org/10.1002/joc.3370120706.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bollasina, M., and S. Nigam, 2011: The summertime heat low over Pakistan/northwestern India: Evolution and origin. Climate Dyn., 37, 957970, https://doi.org/10.1007/s00382-010-0879-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boos, W. R., J. V. Hurley, and V. S. Murthy, 2015: Adiabatic westward drift of Indian monsoon depressions. Quart. J. Roy. Meteor. Soc., 141, 10351048, https://doi.org/10.1002/qj.2454.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boos, W. R., B. E. Mapes, and V. S. Murthy, 2017: Potential vorticity structure and propagation mechanism of Indian monsoon depressions. The Global Monsoon System, C. P. Chang et al., Eds., World Scientific, 187–199.

    • Crossref
    • Export Citation
  • Bosilovich, M., and Coauthors, 2015: MERRA-2: Initial evaluation of the climate. NASA Tech. Rep. NASA/TM-2015-104606, Vol. 43, 136 pp.

  • Bourke, W., 1974: A multi-level spectral model. I. Formulation and hemispheric integrations. Mon. Wea. Rev., 102, 687701, https://doi.org/10.1175/1520-0493(1974)102<0687:AMLSMI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brode, R. W., and M.-K. Mak, 1978: On the mechanism of the monsoonal mid-tropospheric cyclone formation. J. Atmos. Sci., 35, 14731484, https://doi.org/10.1175/1520-0469(1978)035<1473:OTMOTM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carr, F. H., 1977: Mid-tropospheric cyclones of the summer monsoon. Pure Appl. Geophys. (PAGEOPH), 115, 13831412, https://doi.org/10.1007/BF00874415.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chattopadhyay, R., B. N. Goswami, A. K. Sahai, and K. Fraedrich, 2009: Role of stratiform rainfall in modifying the northward propagation of monsoon intraseasonal oscillation. J. Geophys. Res., 114, D19114, https://doi.org/10.1029/2009JD011869.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Choudhury, A. D., and R. Krishnan, 2011: Dynamical response of the South Asian monsoon trough to latent heating from stratiform and convective precipitation. J. Atmos. Sci., 68, 13471363, https://doi.org/10.1175/2011JAS3705.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Das, P. K., and H. S. Bedi, 1981: A numerical model of the monsoon trough. Monsoon Dynamics, J. Lighthill and R. Pearce, Eds., Cambridge University Press, 351–363.

    • Crossref
    • Export Citation
  • Dee, D. P., and S. Uppala, 2009: Variational bias correction of satellite radiance data in the ERA-Interim reanalysis. Quart. J. Roy. Meteor. Soc., 135, 18301841, https://doi.org/10.1002/qj.493.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Duchon, C. E., 1979: Lanczos filtering in one and two dimensions. J. Appl. Meteor., 18, 10161022, https://doi.org/10.1175/1520-0450(1979)018<1016:LFIOAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goswami, B. N., 2005: South Asian monsoon. Intraseasonal Variability of the Atmosphere-Ocean Climate System, W. K. M. Lau and D. E. Waliser, Eds., Springer, 19–61.

    • Crossref
    • Export Citation
  • Hartmann, D. L., and M. L. Michelsen, 1989: Intraseasonal periodicities in Indian rainfall. J. Atmos. Sci., 46, 28382862, https://doi.org/10.1175/1520-0469(1989)046<2838:IPIIR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hartmann, D. L., H. H. Hendon, and R. A. Houze Jr., 1984: Some implications of the mesoscale circulations in tropical cloud clusters for large-scale dynamics and climate. J. Atmos. Sci., 41, 113121, https://doi.org/10.1175/1520-0469(1984)041<0113:SIOTMC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., and M. J. Rodwell, 1995: A model of the Asian summer monsoon. Part I: The global scale. J. Atmos. Sci., 52, 13291340, https://doi.org/10.1175/1520-0469(1995)052<1329:AMOTAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., 1997: Stratiform precipitation in regions of convection: A meteorological paradox? Bull. Amer. Meteor. Soc., 78, 21792196, https://doi.org/10.1175/1520-0477(1997)078<2179:SPIROC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., 2004: Mesoscale convective systems. Rev. Geophys., 42, RG4003, https://doi.org/10.1029/2004RG000150.

  • Huffman, G. J., and Coauthors, 1997: The Global Precipitation Climatology Project (GPCP) combined precipitation dataset. Bull. Amer. Meteor. Soc., 78, 520, https://doi.org/10.1175/1520-0477(1997)078<0005:TGPCPG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and Coauthors, 2007: The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeor., 8, 3855, https://doi.org/10.1175/JHM560.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hunt, K. M. R., A. G. Turner, P. M. Inness, D. E. Parker, and R. C. Levine, 2016: On the structure and dynamics of Indian monsoon depressions. Mon. Wea. Rev., 144, 33913416, https://doi.org/10.1175/MWR-D-15-0138.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hurley, J. V., and W. R. Boos, 2015: A global climatology of monsoon low pressure systems. Quart. J. Roy. Meteor. Soc., 141, 10491064, https://doi.org/10.1002/qj.2447.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jayanthi, N., M. Rajeevan, A. K. Srivastava, S. Devi, S. K. Roy Bhowmik, and H. R. Hatwar, 2006: Monsoon 2006: A Report. Synoptic Meteor., No. 4/2006, Indian Meteorological Department, 103 pp.

  • Kodama, Y.-M., M. Katsumata, S. Mori, S. Satoh, Y. Hirose, and H. Ueda, 2009: Climatology of warm rain and associated latent heating derived from TRMM-PR observations. J. Climate, 22, 49084929, https://doi.org/10.1175/2009JCLI2575.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Konwar, M., S. K. Das, S. M. Deshpande, K. Chakravarty, and B. N. Goswami, 2014: Microphysics of clouds and rain over the western Ghat. J. Geophys. Res. Atmos., 119, 61406159, https://doi.org/10.1002/2014JD021606.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krishnamurthy, V., and J. Shukla, 2000: Intraseasonal and interannual variability of rainfall over India. J. Climate, 13, 43664377, https://doi.org/10.1175/1520-0442(2000)013<0001:IAIVOR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krishnamurthy, V., and J. Shukla, 2007: Intraseasonal and seasonally persisting patterns of Indian monsoon rainfall. J. Climate, 20, 320, https://doi.org/10.1175/JCLI3981.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krishnamurthy, V., and J. Shukla, 2008: Seasonal persistence and propagation of intraseasonal patterns over the Indian monsoon region. Climate Dyn., 30, 353369, https://doi.org/10.1007/s00382-007-0300-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krishnamurti, T. N., and R. Hawkins, 1970: Mid-tropospheric cyclones of the southwest monsoon. J. Appl. Meteor., 9, 442458, https://doi.org/10.1175/1520-0450(1970)009<0442:MTCOTS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krishnamurti, T. N., and D. Subrahmanyam, 1982: The 30-50 day mode at 850 mb during MONEX. J. Atmos. Sci., 39, 20882095, https://doi.org/10.1175/1520-0469(1982)039<2088:TDMAMD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krishnamurti, T. N., A. Chakraborty, and A. Mishra, 2010: Improving multimodel forecasts of the vertical distribution of heating using the TRMM profiles. J. Climate, 23, 10791094, https://doi.org/10.1175/2009JCLI2878.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krishnan, R., and S. V. Kasture, 1996: Modulation of low frequency intraseasonal oscillations of northern summer monsoon by El Nino and Southern Oscillation (ENSO). Meteor. Atmos. Phys., 60, 237257, https://doi.org/10.1007/BF01042187.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krishnan, R., C. Zhang, and M. Sugi, 2000: Dynamics of breaks in the Indian summer monsoon. J. Atmos. Sci., 57, 13541372, https://doi.org/10.1175/1520-0469(2000)057<1354:DOBITI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krishnan, R., D. C. Ayantika, V. Kumar, and S. Pokhrel, 2011: The long-lived monsoon depressions of 2006 and their linkage with the Indian Ocean dipole. Int. J. Climatol., 31, 13341352, https://doi.org/10.1002/joc.2156.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumar, S., A. Hazra, and B. N. Goswami, 2014: Role of interaction between dynamics, hermodynamics and cloud microphysics on summer monsoon precipitating clouds over the Myanmar coast and the Western Ghats. Climate Dyn., 43, 911924, https://doi.org/10.1007/s00382-013-1909-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumar, V., and T. N. Krishnamurti, 2016: Mesoscale modeling for the rapid movement of monsoonal isochrones. Atmos. Sci. Lett., 17, 7886, https://doi.org/10.1002/asl.617.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lau, K.-M., and P. Chan, 1986: Aspects of the 40-50 day oscillation during the northern summer as inferred from outgoing longwave radiation. Mon. Wea. Rev., 114, 13541367, https://doi.org/10.1175/1520-0493(1986)114<1354:AOTDOD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mak, M.-K., 1975: The monsoonal mid-tropospheric cyclogenesis. J. Atmos. Sci., 32, 22462253, https://doi.org/10.1175/1520-0469(1975)032<2246:TMMTC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mak, M.-K., 1983: A moist baroclinic model for monsoonal mid-tropospheric cyclogenesis. J. Atmos. Sci., 40, 11541162, https://doi.org/10.1175/1520-0469(1983)040<1154:AMBMFM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mapes, B. E., 1993: Gregarious tropical convection. J. Atmos. Sci., 50, 20262037, https://doi.org/10.1175/1520-0469(1993)050<2026:GTC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mapes, B. E., 2011: Heaviest precipitation events, 1998-2007: A near-global survey. The Global Monsoon System: Research and Forecast, World Scientific,15–22.

    • Crossref
    • Export Citation
  • Mapes, B. E., and R. A. Houze Jr., 1995: Diabatic divergence profiles in western Pacific mesoscale convective systems. J. Atmos. Sci., 52, 18071828, https://doi.org/10.1175/1520-0469(1995)052<1807:DDPIWP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mapes, B. E., J. Bacmeister, M. Khairoutdinov, C. Hannay, and M. Zhao, 2009: Virtual field campaigns on deep tropical convection in climate models. J. Climate, 22, 244257, https://doi.org/10.1175/2008JCLI2203.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matilla, B., and B. E. Mapes, 2018: An atlas of tropical extremes. Tropical Extremes: Natural Variability and Trends, V. Vuruputur et al., Eds., Elsevier Press, in press.

  • Mazumdar, A., R. R. Lele, and S. S. Devi, 2007: Monsoon season (June to September 2006). Mausam, 58, 409458.

  • Mazumdar, A., M. Khole, and S. S. Devi, 2008: Monsoon season (June to September 2007). Mausam, 59, 381430.

  • Mazumdar, A., M. Khole, and S. S. Devi, 2009: Monsoon season (June to September 2008). Mausam, 60, 379426.

  • Miller, F. R., and R. N. Keshavamurthy, 1968: Structure of an Arabian Sea Summer Monsoon System. Meteor. Monogr., Vol. 1, East–West Center Press, 94 pp.

  • Pai, D., L. Sridhar, M. Badwaik, and M. Rajeevan, 2015: Analysis of the daily rainfall events over India using a new long period (1901–2010) high resolution (0.25° × 0.25°) gridded rainfall data set. Climate Dyn., 45, 755776, https://doi.org/10.1007/s00382-014-2307-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pokhrel, S., and D. R. Sikka, 2013: Variability of the TRMM-PR total and convective and stratiform rain fractions over the Indian region during the summer monsoon. Climate Dyn., 41, 2144, https://doi.org/10.1007/s00382-012-1502-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ramage, C., 1966: The summer atmospheric circulation over the Arabian Sea. J. Atmos. Sci., 23, 144150, https://doi.org/10.1175/1520-0469(1966)023<0144:TSACOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rodwell, M. J., and B. J. Hoskins, 1996: Monsoons and the dynamics of deserts. Quart. J. Roy. Meteor. Soc., 122, 13851404, https://doi.org/10.1002/qj.49712253408.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Romatschke, U., and R. A. Houze Jr., 2011: Characteristics of precipitating convective systems in the South Asian monsoon. J. Hydrometeor., 12, 326, https://doi.org/10.1175/2010JHM1289.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Routray, A., U. C. Mohanty, D. Niyogi, S. Rizvi, and K. K. Osuri, 2010: Simulation of heavy rainfall events over Indian monsoon region using WRF-3DVAR data assimilation system. Meteor. Atmos. Phys., 106, 107125, https://doi.org/10.1007/s00703-009-0054-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saaroni, H., B. Ziv, I. Osetinsky, and P. Alpert, 2010: Factors governing the interannual variation and the long-term trend of the 850 hPa temperature over Israel. Quart. J. Roy. Meteor. Soc., 136, 305318, https://doi.org/10.1002/qj.580.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schumacher, C., and R. A. Houze Jr., 2003: Stratiform rain in the tropics as seen by the TRMM Precipitation Radar. J. Climate, 16, 17391756, https://doi.org/10.1175/1520-0442(2003)016<1739:SRITTA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schumacher, C., R. A. Houze Jr., and I. Kraucunas, 2004: The tropical dynamical response to latent heating estimates derived from the TRMM Precipitation Radar. J. Atmos. Sci., 61, 13411358, https://doi.org/10.1175/1520-0469(2004)061<1341:TTDRTL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schumacher, C., M. H. Zhang, and P. E. Ciesielski, 2007: Heating structures of the TRMM field campaigns. J. Atmos. Sci., 64, 25932610, https://doi.org/10.1175/JAS3938.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shige, S., and C. D. Kummerow, 2016: Precipitation-top heights of heavy orographic rainfall in the Asian monsoon region. J. Atmos. Sci., 73, 30093024, https://doi.org/10.1175/JAS-D-15-0271.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shige, S., Y. N. Takayabu, W.-K. Tao, and D. E. Johnson, 2004: Spectral retrieval of latent heating profiles from TRMM PR data. Part I: Development of a model-based algorithm. J. Appl. Meteor., 43, 10951113, https://doi.org/10.1175/1520-0450(2004)043<1095:SROLHP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shige, S., Y. N. Takayabu, W.-K. Tao, and C.-L. Shie, 2007: Spectral retrieval of latent heating profiles from TRMM PR data. Part II: Algorithm improvement and heating estimates over tropical ocean regions. J. Appl. Meteor. Climatol., 46, 10981124, https://doi.org/10.1175/JAM2510.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shige, S., Y. N. Takayabu, S. Kida, W.-K. Tao, X. Zeng, and T. L’Ecuyer, 2009: Spectral retrieved of latent heating profiles from TRMM PR data. Part VI: Comparisons of lookup tables from two- and three-dimensional simulations. J. Climate, 22, 55775594, https://doi.org/10.1175/2009JCLI2919.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shige, S., Y. Nakano, and M. K. Yamamoto, 2017: Role of orography, diurnal cycle, and intraseasonal oscillation in summer monsoon rainfall over Western Ghats and Myanmar coast. J. Climate, 30, 93659381, https://doi.org/10.1175/JCLI-D-16-0858.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sikka, D. R., and S. Gadgil, 1980: On the maximum cloud zone and the ITCZ over Indian longitudes during the southwest monsoon. Mon. Wea. Rev., 108, 18401853, https://doi.org/10.1175/1520-0493(1980)108<1840:OTMCZA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Singh, S. V., R. H. Kripalani, and D. Sikka, 1992: Interannual variability of the Madden–Julian oscillations in Indian summer monsoon rainfall. J. Climate, 5, 973978, https://doi.org/10.1175/1520-0442(1992)005<0973:IVOTMJ>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stano, G., T. N. Krishnamurti, T. V. Kumar, and A. Chakraborty, 2002: Hydrometeor structure of a composite monsoon depression using the TRMM radar. Tellus, 54A, 370381, https://doi.org/10.1034/j.1600-0870.2002.01330.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sundaram, S., R. Krishnan, A. Dey, and P. Swapna, 2010: Dynamics of intensification of the boreal summer monsoon flow during IOD events. Meteor. Atmos. Phys., 107, 1731, https://doi.org/10.1007/s00703-010-0066-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tao, W.-K., and Coauthors, 2001: Retrieved vertical profiles of latent heat release using TRMM rainfall products for February 1998. J. Appl. Meteor., 40, 957982, https://doi.org/10.1175/1520-0450(2001)040<0957:RVPOLH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tao, W.-K., S. Lang, X. Zeng, S. Shige, and Y. Takayabu, 2010: Relating convective and stratiform rain to latent heating. J. Climate, 23, 18741893, https://doi.org/10.1175/2009JCLI3278.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tyrlis, E., J. Lelieveld, and B. Steil, 2013: The summer circulation over the eastern Mediterranean and the Middle East: Influence of the South Asian monsoon. Climate Dyn., 40, 11031123, https://doi.org/10.1007/s00382-012-1528-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Utsav, B., S. M. Deshpande, S. K. Das, and G. Pandithurai, 2017: Statistical characteristics of convective clouds over the Western Ghats derived from weather radar observations. J. Geophys. Res. Atmos., 122, 10 05010 076, https://doi.org/10.1002/2016JD026183.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Virts, K. S., and R. A. Houze Jr., 2016: Seasonal and intraseasonal variability of mesoscale convective systems over the South Asian monsoon region. J. Atmos. Sci., 73, 47534774, https://doi.org/10.1175/JAS-D-16-0022.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., 2005: Theory. Intraseasonal Variability in the Atmosphere-Ocean Climate System, W. K.-M. Lau and D. E. Waliser, Eds., Springer, 307–360.

    • Crossref
    • Export Citation
  • Wu, G., Y. Liu, X. Zhu, W. Li, R. Ren, A. Duan, and X. Liang, 2009: Multi-scale forcing and the formation of subtropical desert and monsoon. Ann. Geophys., 27, 36313644, https://doi.org/10.5194/angeo-27-3631-2009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yasunari, T., 1979: Cloudiness fluctuations associated with the Northern Hemisphere summer monsoon. J. Meteor. Soc. Japan, 57, 227242, https://doi.org/10.2151/jmsj1965.57.3_227.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yasunari, T., 1980: A quasi-stationary appearance of 30 to 40 day period in the cloudiness fluctuations during the summer monsoon over India. J. Meteor. Soc. Japan, 58, 225229, https://doi.org/10.2151/jmsj1965.58.3_225.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1359 394 77
PDF Downloads 889 156 5