Buoyant Motion of a Turbulent Thermal

Nathaniel Tarshish Atmospheric and Oceanic Sciences Program, Princeton University, Princeton, New Jersey

Search for other papers by Nathaniel Tarshish in
Current site
Google Scholar
PubMed
Close
,
Nadir Jeevanjee Department of Geosciences, Princeton University, Princeton, New Jersey

Search for other papers by Nadir Jeevanjee in
Current site
Google Scholar
PubMed
Close
, and
Daniel Lecoanet Princeton Center for Theoretical Science, Princeton University, Princeton, New Jersey

Search for other papers by Daniel Lecoanet in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

By introducing an equivalence between magnetostatics and the equations governing buoyant motion, we derive analytical expressions for the acceleration of isolated density anomalies (thermals). In particular, we investigate buoyant acceleration, defined as the sum of the Archimedean buoyancy B and an associated perturbation pressure gradient. For the case of a uniform spherical thermal, the anomaly fluid accelerates at 2B/3, extending the textbook result for the induced mass of a solid sphere to the case of a fluid sphere. For a more general ellipsoidal thermal, we show that the buoyant acceleration is a simple analytical function of the ellipsoid’s aspect ratio. The relevance of these idealized uniform-density results to turbulent thermals is explored by analyzing direct numerical simulations of thermals at a Reynolds number (Re) of 6300. We find that our results fully characterize a thermal’s initial motion over a distance comparable to its length. Beyond this buoyancy-dominated regime, a thermal develops an ellipsoidal vortex circulation and begins to entrain environmental fluid. Our analytical expressions do not describe the total acceleration of this mature thermal, but they still accurately relate the buoyant acceleration to the thermal’s mean Archimedean buoyancy and aspect ratio. Thus, our analytical formulas provide a simple and direct means of estimating the buoyant acceleration of turbulent thermals.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Nathaniel Tarshish, tarshish@noaa.gov

Abstract

By introducing an equivalence between magnetostatics and the equations governing buoyant motion, we derive analytical expressions for the acceleration of isolated density anomalies (thermals). In particular, we investigate buoyant acceleration, defined as the sum of the Archimedean buoyancy B and an associated perturbation pressure gradient. For the case of a uniform spherical thermal, the anomaly fluid accelerates at 2B/3, extending the textbook result for the induced mass of a solid sphere to the case of a fluid sphere. For a more general ellipsoidal thermal, we show that the buoyant acceleration is a simple analytical function of the ellipsoid’s aspect ratio. The relevance of these idealized uniform-density results to turbulent thermals is explored by analyzing direct numerical simulations of thermals at a Reynolds number (Re) of 6300. We find that our results fully characterize a thermal’s initial motion over a distance comparable to its length. Beyond this buoyancy-dominated regime, a thermal develops an ellipsoidal vortex circulation and begins to entrain environmental fluid. Our analytical expressions do not describe the total acceleration of this mature thermal, but they still accurately relate the buoyant acceleration to the thermal’s mean Archimedean buoyancy and aspect ratio. Thus, our analytical formulas provide a simple and direct means of estimating the buoyant acceleration of turbulent thermals.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Nathaniel Tarshish, tarshish@noaa.gov
Save
  • Batchelor, G. K., 2000: An Introduction to Fluid Dynamics. Cambridge Mathematical Library, Cambridge University Press, 615 pp.

  • Burns, K., G. Vasil, J. Oishi, D. Lecoanet, and B. Brown, 2016: Dedalus: Flexible framework for spectrally solving differential equations. Astrophysics Source Code Library, http://adsabs.harvard.edu/abs/2016ascl.soft03015B.

  • Damiani, R., and G. Vali, 2007: Evidence for tilted toroidal circulations in cumulus. J. Atmos. Sci., 64, 20452060, https://doi.org/10.1175/JAS3941.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Damiani, R., G. Vali, and S. Haimov, 2006: The structure of thermals in cumulus from airborne dual-Doppler radar observations. J. Atmos. Sci., 63, 14321450, https://doi.org/10.1175/JAS3701.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davies-Jones, R., 2003: An expression for effective buoyancy in surroundings with horizontal density gradients. J. Atmos. Sci., 60, 29222925, https://doi.org/10.1175/1520-0469(2003)060<2922:AEFEBI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • De Roode, S. R., A. P. Siebesma, H. J. J. Jonker, and Y. D. Voogd, 2012: Parameterization of the vertical velocity equation for shallow cumulus clouds. Mon. Wea. Rev., 140, 24242436, https://doi.org/10.1175/MWR-D-11-00277.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doswell, C. A., and P. M. Markowski, 2004: Is buoyancy a relative quantity? Mon. Wea. Rev., 132, 853863, https://doi.org/10.1175/1520-0493(2004)132<0853:IBARQ>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Escudier, M. P., and T. Maxworthy, 1973: On the motion of turbulent thermals. J. Fluid Mech., 61, 541552, https://doi.org/10.1017/S0022112073000856.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Griffiths, D. J., 2017: Introduction to Electrodynamics. 4th ed. Cambridge University Press, 599 pp.

    • Crossref
    • Export Citation
  • Hernandez-Deckers, D., and S. C. Sherwood, 2016: A numerical investigation of cumulus thermals. J. Atmos. Sci., 73, 41174136, https://doi.org/10.1175/JAS-D-15-0385.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., 2014: Cloud Dynamics. 2nd ed. International Geophysics Series, Vol. 104, Academic Press, 432 pp.

  • Jackson, J. D., 1998: Classical Electrodynamics. 3rd ed. Wiley, 832 pp.

    • Crossref
    • Export Citation
  • Jeevanjee, N., 2017: Vertical velocity in the gray zone. J. Adv. Model. Earth Syst., 9, 23042316, https://doi.org/10.1002/2017MS001059.

  • Jeevanjee, N., and D. M. Romps, 2015: Effective buoyancy, inertial pressure, and the mechanical generation of boundary layer mass flux by cold pools. J. Atmos. Sci., 72, 31993213, https://doi.org/10.1175/JAS-D-14-0349.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jeevanjee, N., and D. M. Romps, 2016: Effective buoyancy at the surface and aloft. Quart. J. Roy. Meteor. Soc., 142, 811820, https://doi.org/10.1002/qj.2683.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krueger, S. K., G. T. Mclean, and Q. Fu, 1995: Numerical simulation of the stratus-to-cumulus transition in the subtropical marine boundary layer. Part II: Boundary-layer circulation. J. Atmos. Sci., 52, 28512868, https://doi.org/10.1175/1520-0469(1995)052<2851:NSOTST>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lamb, H., 1945: Hydrodynamics. 6th ed. Dover, 738 pp.

  • Lecoanet, D., and N. Jeevanjee, 2018: Entrainment in resolved, turbulent dry thermals. arXiv.org, 11 pp., https://arxiv.org/abs/1804.09326v1.

  • Markowski, P., and Y. Richardson, 2011: Mesoscale Meteorology in Midlatitudes. Advancing Weather and Climate Science, John Wiley & Sons, 424 pp.

    • Crossref
    • Export Citation
  • Maxwell, J. C., 1873: Treatise on Electricity and Magnetism. Vol. 2. Clarendon Press, 444 pp.

  • Morrison, H., 2016a: Impacts of updraft size and dimensionality on the perturbation pressure and vertical velocity in cumulus convection. Part I: Simple, generalized analytic solutions. J. Atmos. Sci., 73, 14411454, https://doi.org/10.1175/JAS-D-15-0040.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morrison, H., 2016b: Impacts of updraft size and dimensionality on the perturbation pressure and vertical velocity in cumulus convection. Part II: Comparison of theoretical and numerical solutions and fully dynamical simulations. J. Atmos. Sci., 73, 14551480, https://doi.org/10.1175/JAS-D-15-0041.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pauluis, O., and S. Garner, 2006: Sensitivity of radiative–convective equilibrium simulations to horizontal resolution. J. Atmos. Sci., 63, 19101923, https://doi.org/10.1175/JAS3705.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peters, J. M., 2016: The impact of effective buoyancy and dynamic pressure forcing on vertical velocities within two-dimensional updrafts. J. Atmos. Sci., 73, 45314551, https://doi.org/10.1175/JAS-D-16-0016.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Romps, D. M., and A. B. Charn, 2015: Sticky thermals: Evidence for a dominant balance between buoyancy and drag in cloud updrafts. J. Atmos. Sci., 72, 28902901, https://doi.org/10.1175/JAS-D-15-0042.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Romps, D. M., and Z. Kuang, 2010: Do undiluted convective plumes exist in the upper tropical troposphere? J. Atmos. Sci., 67, 468484, https://doi.org/10.1175/2009JAS3184.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scorer, R. S., 1957: Experiments on convection of isolated masses of buoyant fluid. J. Fluid Mech., 2, 583, https://doi.org/10.1017/S0022112057000397.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sherwood, S. C., D. Hernàndez-Deckers, M. Colin, and F. Robinson, 2013: Slippery thermals and the cumulus entrainment paradox. J. Atmos. Sci., 70, 24262442, https://doi.org/10.1175/JAS-D-12-0220.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stoner, E. C., 1945: XCVII. The demagnetizing factors for ellipsoids. London Edinburgh Dublin Philos. Mag. J. Sci., 36, 803821, https://doi.org/10.1080/14786444508521510.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tejedor, M., H. Rubio, L. Elbaile, and R. Iglesias, 1995: External fields created by uniformly magnetized ellipsoids and spheroids. IEEE Trans. Magn., 31, 830836, https://doi.org/10.1109/20.364589.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Turner, J. S., 1964: The dynamics of spheroidal masses of buoyant fluid. J. Fluid Mech., 19, 481490, https://doi.org/10.1017/S0022112064000854.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., W. C. Skamarock, and J. B. Klemp, 1997: The resolution dependence of explicitly modeled convective systems. Mon. Wea. Rev., 125, 527548, https://doi.org/10.1175/1520-0493(1997)125<0527:TRDOEM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Woodward, B., 1959: The motion in and around isolated thermals. Quart. J. Roy. Meteor. Soc., 85, 144151, https://doi.org/10.1002/qj.49708536407.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, K.-M., and D. A. Randall, 2001: Updraft and downdraft statistics of simulated tropical and midlatitude cumulus convection. J. Atmos. Sci., 58, 16301649, https://doi.org/10.1175/1520-0469(2001)058<1630:UADSOS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 557 127 16
PDF Downloads 426 106 11