Impacts of Ice Particle Shape and Density Evolution on the Distribution of Orographic Precipitation

Anders A. Jensen National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Anders A. Jensen in
Current site
Google Scholar
PubMed
Close
,
Jerry Y. Harrington The Pennsylvania State University, University Park, Pennsylvania

Search for other papers by Jerry Y. Harrington in
Current site
Google Scholar
PubMed
Close
, and
Hugh Morrison National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Hugh Morrison in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

An IMPROVE-2 orographic precipitation case is simulated using the Ice-Spheroids Habit Model with Aspect-Ratio Evolution (ISHMAEL) microphysics. In ISHMAEL, the evolution of ice particle properties such as mass, shape, size, density, and fall speed are predicted. These ice particle properties along with the ice size distributions from ISHMAEL and model-derived spatial distribution of accumulated precipitation are compared to observations. ISHMAEL predicts planar and columnar particles at spatial locations that agree with observations. Sensitivity simulations are used to explore the impact of predicting ice particle shape evolution on orographic cloud properties and precipitation compared to the traditional approach of representing snow and graupel using separate categories with conversion from snow to graupel during riming. High biases in both IWCs aloft and surface precipitation accumulation occur in the Umpqua River valley using separate snow and graupel categories because snow that does not convert to graupel is advected over the Coast Range and precipitates out in the valley. Improvements in IWCs aloft and surface precipitation using ISHMAEL occur from both predicting various vapor-grown habits and predicting the impact of partial riming on ice particle properties. Compared to traditional microphysics schemes, ISHMAEL also produces less spatial variability in accumulated precipitation.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Anders A. Jensen, ajensen@ucar.edu

Abstract

An IMPROVE-2 orographic precipitation case is simulated using the Ice-Spheroids Habit Model with Aspect-Ratio Evolution (ISHMAEL) microphysics. In ISHMAEL, the evolution of ice particle properties such as mass, shape, size, density, and fall speed are predicted. These ice particle properties along with the ice size distributions from ISHMAEL and model-derived spatial distribution of accumulated precipitation are compared to observations. ISHMAEL predicts planar and columnar particles at spatial locations that agree with observations. Sensitivity simulations are used to explore the impact of predicting ice particle shape evolution on orographic cloud properties and precipitation compared to the traditional approach of representing snow and graupel using separate categories with conversion from snow to graupel during riming. High biases in both IWCs aloft and surface precipitation accumulation occur in the Umpqua River valley using separate snow and graupel categories because snow that does not convert to graupel is advected over the Coast Range and precipitates out in the valley. Improvements in IWCs aloft and surface precipitation using ISHMAEL occur from both predicting various vapor-grown habits and predicting the impact of partial riming on ice particle properties. Compared to traditional microphysics schemes, ISHMAEL also produces less spatial variability in accumulated precipitation.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Anders A. Jensen, ajensen@ucar.edu
Save
  • Arguez, A., I. Durre, S. Applequist, R. S. Vose, M. F. Squires, X. Yin, R. R. Heim Jr., and T. W. Owen, 2012: NOAA’s 1981–2010 U.S. climate normals: An overview. Bull. Amer. Meteor. Soc., 93, 16871697, https://doi.org/10.1175/BAMS-D-11-00197.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bailey, M. P., and J. Hallett, 2009: A comprehensive habit diagram for atmospheric ice crystals: Confirmation from the laboratory, AIRS II, and other field studies. J. Atmos. Sci., 66, 28882899, https://doi.org/10.1175/2009JAS2883.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bond, N. A., and Coauthors, 1997: The Coastal Observation and Simulation with Topography (COAST) experiment. Bull. Amer. Meteor. Soc., 78, 19411955, https://doi.org/10.1175/1520-0477(1997)078<1941:TCOASW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, J.-P., and D. Lamb, 1994: The theoretical basis for the parameterization of ice crystal habits: Growth by vapor deposition. J. Atmos. Sci., 51, 12061221, https://doi.org/10.1175/1520-0469(1994)051<1206:TTBFTP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, J.-P., and D. Lamb, 1999: Simulation of cloud microphysical and chemical processes using a multicomponent framework. Part II: Microphysical evolution of a wintertime orographic cloud. J. Atmos. Sci., 56, 22932312, https://doi.org/10.1175/1520-0469(1999)056<2293:SOCMAC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Colle, B. A., and Y. Zeng, 2004: Bulk microphysical sensitivities within the MM5 for orographic precipitation. Part I: The Sierra 1986 event. Mon. Wea. Rev., 132, 27802801, https://doi.org/10.1175/MWR2821.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Colle, B. A., M. F. Garvert, J. B. Wolfe, C. F. Mass, and C. P. Woods, 2005: The 13–14 December 2001 IMPROVE-2 event. Part III: Simulated microphysical budgets and sensitivity studies. J. Atmos. Sci., 62, 35353558, https://doi.org/10.1175/JAS3552.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Connolly, P. J., C. Emersic, and P. R. Field, 2012: A laboratory investigation into the aggregation efficiency of small ice crystals. Atmos. Chem. Phys., 12, 20552076, https://doi.org/10.5194/acp-12-2055-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Durre, I., M. F. Squires, R. S. Vose, X. Yin, A. Arguez, and S. Applequist, 2013: NOAA’s 1981–2010 U.S. climate normals: Monthly precipitation, snowfall, and snow depth. J. Appl. Meteor. Climatol., 52, 23772395, https://doi.org/10.1175/JAMC-D-13-051.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ferrier, B. S., 1994: A double-moment multiple-phase four-class bulk ice scheme. Part I: Description. J. Atmos. Sci., 51, 249280, https://doi.org/10.1175/1520-0469(1994)051<0249:ADMMPF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Foehn, P., M. Stoffel, and P. Bartelt, 2002: Formation and forecasting of large (catastrophic) new snow avalanches. Proc. Int. Snow Science Workshop, Penticton, BC, Canada, International Snow Science Workshop Steering Committee, 141148.

  • Fukuta, N., and T. Takahashi, 1999: The growth of atmospheric ice crystals: A summary of findings in vertical supercooled cloud tunnel studies. J. Atmos. Sci., 56, 19631979, https://doi.org/10.1175/1520-0469(1999)056<1963:TGOAIC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garvert, M. F., B. A. Colle, and C. F. Mass, 2005a: The 13–14 December 2001 IMPROVE-2 event. Part I: Synoptic and mesoscale evolution and comparison with a mesoscale model simulation. J. Atmos. Sci., 62, 34743492, https://doi.org/10.1175/JAS3549.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garvert, M. F., C. P. Woods, B. A. Colle, C. F. Mass, P. V. Hobbs, M. T. Stoelinga, and J. B. Wolfe, 2005b: The 13–14 December 2001 IMPROVE-2 event. Part II: Comparisons of MM5 model simulations of clouds and precipitation with observations. J. Atmos. Sci., 62, 35203534, https://doi.org/10.1175/JAS3551.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harrington, J. Y., K. Sulia, and H. Morrison, 2013a: A method for adaptive habit prediction in bulk microphysical models. Part I: Theoretical development. J. Atmos. Sci., 70, 349364, https://doi.org/10.1175/JAS-D-12-040.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harrington, J. Y., K. Sulia, and H. Morrison, 2013b: A method for adaptive habit prediction in bulk microphysical models. Part II: Parcel model corroboration. J. Atmos. Sci., 70, 365376, https://doi.org/10.1175/JAS-D-12-0152.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hashino, T., and G. J. Tripoli, 2007: The Spectral Ice Habit Prediction System (SHIPS). Part I: Model description and simulation of the vapor deposition process. J. Atmos. Sci., 64, 22102237, https://doi.org/10.1175/JAS3963.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., 1982: A comparative study of the rates of development of potential graupel and hail embryos in High Plains storms. J. Atmos. Sci., 39, 28672897, https://doi.org/10.1175/1520-0469(1982)039<2867:ACSOTR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hobbs, P. V., 1975: The nature of winter clouds and precipitation in the Cascade Mountains and their modification by artificial seeding. Part I: Natural conditions. J. Appl. Meteor., 14, 783804, https://doi.org/10.1175/1520-0450(1975)014<0783:TNOWCA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, S. Y., and J. O. J. Lim, 2006: The WRF single-moment 6-class microphysics scheme (WSM6). J. Korean Meteor. Soc., 42, 129151.

  • Houze, R. A., Jr., and Coauthors, 2017: The Olympic Mountains Experiment (OLYMPEX). Bull. Amer. Meteor. Soc., 98, 21672188, https://doi.org/10.1175/BAMS-D-16-0182.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Iacono, M. J., J. S. Delamere, E. J. Mlawer, M. W. Shephard, S. A. Clough, and W. D. Collins, 2008: Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res., 113, D13103, https://doi.org/10.1029/2008JD009944.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jensen, A. A., and J. Y. Harrington, 2015: Modeling ice crystal aspect ratio evolution during riming: A single-particle growth model. J. Atmos. Sci., 72, 25692590, https://doi.org/10.1175/JAS-D-14-0297.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jensen, A. A., J. Y. Harrington, H. Morrison, and J. A. Milbrandt, 2017: Predicting ice shape evolution in a bulk microphysics model. J. Atmos. Sci., 74, 20812104, https://doi.org/10.1175/JAS-D-16-0350.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jensen, A. A., J. Y. Harrington, and H. Morrison, 2018: Microphysical characteristics of squall-line stratiform precipitation and transition zones simulated using an ice particle property-evolving model. Mon. Wea. Rev., 146, 723743, https://doi.org/10.1175/MWR-D-17-0215.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kajikawa, M., 1972: Measurement of falling velocity of individual snow crystals. J. Meteor. Soc. Japan, 50, 577584, https://doi.org/10.2151/jmsj1965.50.6_577.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knollenberg, R. G., 1976: Three new instruments for cloud physics measurements: The 2-D spectrometer, the forward scattering spectrometer probe, and the active scattering aerosol spectrometer. Preprints, Int. Conf. on Cloud Physics, Boulder, Colorado, Amer. Meteor. Soc., 554–561.

  • Lawson, R. P., R. E. Stewart, J. W. Strapp, and G. A. Isaac, 1993: Aircraft observations of the origin and growth of very large snowflakes. Geophys. Res. Lett., 20, 5356, https://doi.org/10.1029/92GL02917.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, Y., and B. A. Colle, 2011: A new bulk microphysical scheme that includes riming intensity and temperature-dependent ice characteristics. Mon. Wea. Rev., 139, 10131035, https://doi.org/10.1175/2010MWR3293.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Locatelli, J. D., and P. V. Hobbs, 1974: Fall speeds and masses of solid precipitation particles. J. Geophys. Res., 79, 21852197, https://doi.org/10.1029/JC079i015p02185.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Magono, C., and C. W. Lee, 1966: Meteorological classification of natural snow crystals. J. Fac. Sci. Hokkaido Univ. Ser. 7, 2, 321335.

    • Search Google Scholar
    • Export Citation
  • Mansell, E. R., C. L. Ziegler, and E. C. Bruning, 2010: Simulated electrification of a small thunderstorm with two-moment bulk microphysics. J. Atmos. Sci., 67, 171194, https://doi.org/10.1175/2009JAS2965.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCabe, G. J., L. E. Hay, and M. P. Clark, 2007: Rain-on-snow events in the western United States. Bull. Amer. Meteor. Soc., 88, 319328, https://doi.org/10.1175/BAMS-88-3-319.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Melville, H., 1851: Moby-Dick; or, the Whale. Richard Bentley, 328 pp.

    • Crossref
    • Export Citation
  • Mesinger, F., and Coauthors, 2006: North American Regional Reanalysis. Bull. Amer. Meteor. Soc., 87, 343360, https://doi.org/10.1175/BAMS-87-3-343.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meyers, M. P., R. L. Walko, J. Y. Harrington, and W. R. Cotton, 1997: New RAMS cloud microphysics parameterization. Part II: The two-moment scheme. Atmos. Res., 45, 339, https://doi.org/10.1016/S0169-8095(97)00018-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Milbrandt, J. A., and M. K. Yau, 2005a: A multimoment bulk microphysics parameterization. Part I: Analysis of the role of the spectral shape parameter. J. Atmos. Sci., 62, 30513064, https://doi.org/10.1175/JAS3534.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Milbrandt, J. A., and M. K. Yau, 2005b: A multimoment bulk microphysics parameterization. Part II: A proposed three-moment closure and scheme description. J. Atmos. Sci., 62, 30653081, https://doi.org/10.1175/JAS3535.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Milbrandt, J. A., and H. Morrison, 2013: Prediction of graupel density in a bulk microphysics scheme. J. Atmos. Sci., 70, 410429, https://doi.org/10.1175/JAS-D-12-0204.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Milbrandt, J. A., and H. Morrison, 2016: Parameterization of cloud microphysics based on the prediction of bulk ice particle properties. Part III: Introduction of multiple free categories. J. Atmos. Sci., 73, 975995, https://doi.org/10.1175/JAS-D-15-0204.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Milbrandt, J. A., M. K. Yau, J. Mailhot, and S. Bélair, 2008: Simulation of an orographic precipitation event during IMPROVE-2. Part I: Evaluation of the control run using a triple-moment bulk microphysics scheme. Mon. Wea. Rev., 136, 38733893, https://doi.org/10.1175/2008MWR2197.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Milbrandt, J. A., M. K. Yau, J. Mailhot, S. Bélair, and R. McTaggart-Cowan, 2010: Simulation of an orographic precipitation event during IMPROVE-2. Part II: Sensitivity to the number of moments in the bulk microphysics scheme. Mon. Wea. Rev., 138, 625642, https://doi.org/10.1175/2009MWR3121.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morrison, H., and W. W. Grabowski, 2008: A novel approach for representing ice microphysics in models: Description and tests using a kinematic framework. J. Atmos. Sci., 65, 15281548, https://doi.org/10.1175/2007JAS2491.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morrison, H., and J. A. Milbrandt, 2015: Parameterization of cloud microphysics based on the prediction of bulk ice particle properties. Part I: Scheme description and idealized tests. J. Atmos. Sci., 72, 287311, https://doi.org/10.1175/JAS-D-14-0065.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morrison, H., J. A. Curry, and V. I. Khvorostyanov, 2005: A new double-moment microphysics parameterization for application in cloud and climate models. Part I: Description. J. Atmos. Sci., 62, 16651677, https://doi.org/10.1175/JAS3446.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morrison, H., J. A. Milbrandt, G. H. Bryan, K. Ikeda, S. A. Tessendorf, and G. Thompson, 2015: Parameterization of cloud microphysics based on the prediction of bulk ice particle properties. Part II: Case study comparisons with observations and other schemes. J. Atmos. Sci., 72, 312339, https://doi.org/10.1175/JAS-D-14-0066.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • NCEP, 2005: NCEP North American Regional Reanalysis (NARR). National Center for Atmospheric Research Computational and Information Systems Laboratory Research Data Archive, accessed 5 August 2017, http://rda.ucar.edu/datasets/ds608.0/.

  • Rasmussen, R., and Coauthors, 2012: How well are we measuring snow: The NOAA/FAA/NCAR winter precipitation test bed. Bull. Amer. Meteor. Soc., 93, 811829, https://doi.org/10.1175/BAMS-D-11-00052.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reisner, J., R. M. Rasmussen, and R. T. Bruintjes, 1998: Explicit forecasting of supercooled liquid water in winter storms using the MM5 mesoscale model. Quart. J. Roy. Meteor. Soc., 124, 10711107, https://doi.org/10.1002/qj.49712454804.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sheridan, L. M., J. Y. Harrington, D. Lamb, and K. Sulia, 2009: Influence of ice crystal aspect ratio on the evolution of ice size spectra during vapor depositional growth. J. Atmos. Sci., 66, 37323743, https://doi.org/10.1175/2009JAS3113.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp., https://doi.org/10.5065/D68S4MVH.

    • Crossref
    • Export Citation
  • Stoelinga, M. T., and Coauthors, 2003: Improvement of microphysical parameterization through observational verification experiment. Bull. Amer. Meteor. Soc., 84, 18071826, https://doi.org/10.1175/BAMS-84-12-1807.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Straka, J. M., and E. R. Mansell, 2005: A bulk microphysics parameterization with multiple ice precipitation categories. J. Appl. Meteor., 44, 445466, https://doi.org/10.1175/JAM2211.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Takahashi, T., and N. Fukuta, 1988: Supercooled cloud tunnel studies on the growth of snow crystals between −4 and −20°C. J. Meteor. Soc. Japan, 66, 841855, https://doi.org/10.2151/jmsj1965.66.6_841.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Takahashi, T., T. Endoh, and G. Wakahama, 1991: Vapor diffusional growth of free-falling snow crystals between −3 and −23°C. J. Meteor. Soc. Japan, 69, 1530, https://doi.org/10.2151/jmsj1965.69.1_15.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, G., R. M. Rasmussen, and K. Manning, 2004: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part I: Description and sensitivity analysis. Mon. Wea. Rev., 132, 519542, https://doi.org/10.1175/1520-0493(2004)132<0519:EFOWPU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, G., P. R. Field, R. M. Rasmussen, and W. D. Hall, 2008: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: Implementation of a new snow parameterization. Mon. Wea. Rev., 136, 50955115, https://doi.org/10.1175/2008MWR2387.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Walko, R. L., W. R. Cotton, M. P. Meyers, and J. Y. Harrington, 1995: New RAMS cloud microphysics parameterization part I: The single-moment scheme. Atmos. Res., 38, 2962, https://doi.org/10.1016/0169-8095(94)00087-T.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, P. K., and W. Ji, 2000: Collision efficiences of ice crystals at low–intermediate Reynolds numbers colliding with supercooled cloud droplets: A numerical study. J. Atmos. Sci., 57, 10011009, https://doi.org/10.1175/1520-0469(2000)057<1001:CEOICA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Woods, C. P., M. T. Stoelinga, J. D. Locatelli, and P. V. Hobbs, 2005: Microphysical processes and synergistic interaction between frontal and orographic forcing of precipitation during the 13 December 2001 IMPROVE-2 event over the Oregon Cascades. J. Atmos. Sci., 62, 34933519, https://doi.org/10.1175/JAS3550.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Woods, C. P., M. T. Stoelinga, and J. D. Locatelli, 2007: The IMPROVE-1 storm of 1–2 February 2001. Part III: Sensitivity of a mesoscale model simulation to the representation of snow particle types and testing of a bulk microphysical scheme with snow habit prediction. J. Atmos. Sci., 64, 39273948, https://doi.org/10.1175/2007JAS2239.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 421 140 18
PDF Downloads 369 123 15