Influence of Turbulent Fluctuations on Cloud Droplet Size Dispersion and Aerosol Indirect Effects

K. K. Chandrakar Atmospheric Sciences Program, and Department of Physics, Michigan Technological University, Houghton, Michigan

Search for other papers by K. K. Chandrakar in
Current site
Google Scholar
PubMed
Close
,
W. Cantrell Atmospheric Sciences Program, and Department of Physics, Michigan Technological University, Houghton, Michigan

Search for other papers by W. Cantrell in
Current site
Google Scholar
PubMed
Close
, and
R. A. Shaw Atmospheric Sciences Program, and Department of Physics, Michigan Technological University, Houghton, Michigan

Search for other papers by R. A. Shaw in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

Cloud droplet relative dispersion, defined as the standard deviation over the mean cloud droplet size, is of central importance in determining and understanding aerosol indirect effects. In recent work, it was found that cloud droplet size distributions become broader as a result of supersaturation variability and that the sensitivity of this effect is inversely related to cloud droplet number density. The subject is investigated in further detail using an extensive dataset from a laboratory cloud chamber capable of producing steady-state turbulence. An extended stochastic theory is found to successfully describe properties of the droplet size distribution, including an analytical expression for the relative dispersion. The latter is found to depend on the cloud droplet removal time, which in turn increases with the cloud droplet number density. The results show that relative dispersion decreases monotonically with increasing droplet number density, consistent with some recent atmospheric observations. Experiments spanning fast to slow microphysics regimes are reported. The observed dispersion is used to estimate time scales for autoconversion, demonstrating the important role of the turbulence-induced broadening effect on precipitation development. An initial effort is made to extend the stochastic theory to an atmospheric context with a steady updraft, for which autoconversion time is the controlling factor for droplet lifetime. As in the cloud chamber, relative dispersion is found to increase with decreasing cloud droplet number density.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JAS-D-18-0006.s1.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Raymond Shaw, rashaw@mtu.edu

Abstract

Cloud droplet relative dispersion, defined as the standard deviation over the mean cloud droplet size, is of central importance in determining and understanding aerosol indirect effects. In recent work, it was found that cloud droplet size distributions become broader as a result of supersaturation variability and that the sensitivity of this effect is inversely related to cloud droplet number density. The subject is investigated in further detail using an extensive dataset from a laboratory cloud chamber capable of producing steady-state turbulence. An extended stochastic theory is found to successfully describe properties of the droplet size distribution, including an analytical expression for the relative dispersion. The latter is found to depend on the cloud droplet removal time, which in turn increases with the cloud droplet number density. The results show that relative dispersion decreases monotonically with increasing droplet number density, consistent with some recent atmospheric observations. Experiments spanning fast to slow microphysics regimes are reported. The observed dispersion is used to estimate time scales for autoconversion, demonstrating the important role of the turbulence-induced broadening effect on precipitation development. An initial effort is made to extend the stochastic theory to an atmospheric context with a steady updraft, for which autoconversion time is the controlling factor for droplet lifetime. As in the cloud chamber, relative dispersion is found to increase with decreasing cloud droplet number density.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JAS-D-18-0006.s1.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Raymond Shaw, rashaw@mtu.edu

Supplementary Materials

    • Supplemental Materials (PDF 186.13 KB)
Save
  • Ackerman, A. S., O. B. Toon, J. P. Taylor, D. W. Johnson, P. V. Hobbs, and R. J. Ferek, 2000: Effects of aerosols on cloud albedo: Evaluation of Twomey’s parameterization of cloud susceptibility using measurements of ship tracks. J. Atmos. Sci., 57, 26842695, https://doi.org/10.1175/1520-0469(2000)057<2684:EOAOCA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Albrecht, B. A., 1989: Aerosols, cloud microphysics, and fractional cloudiness. Science, 245, 12271230, https://doi.org/10.1126/science.245.4923.1227.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carslaw, K., and Coauthors, 2013: Large contribution of natural aerosols to uncertainty in indirect forcing. Nature, 503, 6771, https://doi.org/10.1038/nature12674.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chandrakar, K., W. Cantrell, K. Chang, D. Ciochetto, D. Niedermeier, M. Ovchinnikov, R. A. Shaw, and F. Yang, 2016: Aerosol indirect effect from turbulence-induced broadening of cloud-droplet size distributions. Proc. Natl. Acad. Sci. USA, 113, 14 24314 248, https://doi.org/10.1073/pnas.1612686113.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chandrakar, K., W. Cantrell, D. Ciochetto, S. Karki, G. Kinney, and R. A. Shaw, 2017: Aerosol removal and cloud collapse accelerated by supersaturation fluctuations in turbulence. Geophys. Res. Lett., 44, 43594367, https://doi.org/10.1002/2017GL072762.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, K., and Coauthors, 2016: A laboratory facility to study gas–aerosol–cloud interactions in a turbulent environment: The Π chamber. Bull. Amer. Meteor. Soc., 97, 23432358, https://doi.org/10.1175/BAMS-D-15-00203.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, J., Y. Liu, M. Zhang, and Y. Peng, 2016: New understanding and quantification of the regime dependence of aerosol–cloud interaction for studying aerosol indirect effects. Geophys. Res. Lett., 43, 17801787, https://doi.org/10.1002/2016GL067683.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, S., M. Yau, and P. Bartello, 2018: Turbulence effects of collision efficiency and broadening of droplet size distribution in cumulus clouds. J. Atmos. Sci., 75, 203217, https://doi.org/10.1175/JAS-D-17-0123.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cooper, W. A., 1989: Effects of variable droplet growth histories on droplet size distributions. Part I: Theory. J. Atmos. Sci., 46, 13011311, https://doi.org/10.1175/1520-0469(1989)046<1301:EOVDGH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Desai, N., K. Chandrakar, K. Chang, W. Cantrell, and R. Shaw, 2018: Influence of microphysical variability on stochastic condensation in a turbulent laboratory cloud. J. Atmos. Sci., 75, 189201, https://doi.org/10.1175/JAS-D-17-0158.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feingold, G., and H. Siebert, 2009: Cloud–aerosol interactions from the micro to the cloud scale. Clouds in the Perturbed Climate System: Their Relationship to Energy Balance, Atmospheric Dynamics, and Precipitation, J. Heintzenberg and R. J. Charlson, Eds., MIT Press, 319–338, https://doi.org/10.7551/mitpress/9780262012874.003.0014.

    • Crossref
    • Export Citation
  • Field, P., A. Hill, K. Furtado, and A. Korolev, 2014: Mixed-phase clouds in a turbulent environment. Part 2: Analytic treatment. Quart. J. Roy. Meteor. Soc., 140, 870880, https://doi.org/10.1002/qj.2175.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gardiner, C. W., 1985: Handbook of Stochastic Methods for Physics, Chemistry, and the Natural Sciences. Springer, 442 pp.

    • Crossref
    • Export Citation
  • Grabowski, W. W., and L.-P. Wang, 2013: Growth of cloud droplets in a turbulent environment. Annu. Rev. Fluid Mech., 45, 293324, https://doi.org/10.1146/annurev-fluid-011212-140750.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., and G. C. Abade, 2017: Broadening of cloud droplet spectra through eddy hopping: Turbulent adiabatic parcel simulations. J. Atmos. Sci., 74, 14851493, https://doi.org/10.1175/JAS-D-17-0043.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gunn, R., and B. Phillips, 1957: An experimental investigation of the effect of air pollution on the initiation of rain. J. Meteor., 14, 272280, https://doi.org/10.1175/1520-0469(1957)014<0272:AEIOTE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hughes, I., and T. Hase, 2010: Measurements and Their Uncertainties: A Practical Guide to Modern Error Analysis. Oxford University Press, 152 pp.

  • Ireland, P. J., A. D. Bragg, and L. R. Collins, 2016: The effect of Reynolds number on inertial particle dynamics in isotropic turbulence. Part 2. Simulations with gravitational effects. J. Fluid Mech., 796, 659711, https://doi.org/10.1017/jfm.2016.227.

    • Search Google Scholar
    • Export Citation
  • Jacobs, K., 2010: Stochastic Processes for Physicists: Understanding Noisy Systems. Cambridge University Press, 204 pp.

    • Crossref
    • Export Citation
  • Jeffery, C. A., J. M. Reisner, and M. Andrejczuk, 2007: Another look at stochastic condensation for subgrid cloud modeling: Adiabatic evolution and effects. J. Atmos. Sci., 64, 39493969, https://doi.org/10.1175/2006JAS2147.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kostinski, A., 2009: Simple approximations for condensational growth. Environ. Res. Lett., 4, 015005, https://doi.org/10.1088/1748-9326/4/1/015005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lehmann, K., H. Siebert, and R. A. Shaw, 2009: Homogeneous and inhomogeneous mixing in cumulus clouds: Dependence on local turbulence structure. J. Atmos. Sci., 66, 36413659, https://doi.org/10.1175/2009JAS3012.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Y., and P. H. Daum, 2002: Anthropogenic aerosols: Indirect warming effect from dispersion forcing. Nature, 419, 580581, https://doi.org/10.1038/419580a.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Y., P. H. Daum, and R. McGraw, 2004: An analytical expression for predicting the critical radius in the autoconversion parameterization. Geophys. Res. Lett., 31, L06121, https://doi.org/10.1029/2003GL019117.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Y., P. H. Daum, and S. S. Yum, 2006: Analytical expression for the relative dispersion of the cloud droplet size distribution. Geophys. Res. Lett., 33, L02810, https://doi.org/10.1029/2005GL024052.

    • Search Google Scholar
    • Export Citation
  • Liu, Y., P. H. Daum, R. L. McGraw, M. A. Miller, and S. Niu, 2007: Theoretical expression for the autoconversion rate of the cloud droplet number concentration. Geophys. Res. Lett., 34, L16821, https://doi.org/10.1029/2007GL030389.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lu, C., Y. Liu, S. Niu, and A. M. Vogelmann, 2012: Observed impacts of vertical velocity on cloud microphysics and implications for aerosol indirect effects. Geophys. Res. Lett., 39, L21808, https://doi.org/10.1029/2012GL053599.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lu, C., S. Niu, Y. Liu, and A. M. Vogelmann, 2013: Empirical relationship between entrainment rate and microphysics in cumulus clouds. Geophys. Res. Lett., 40, 23332338, https://doi.org/10.1002/grl.50445.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lu, M.-L., W. C. Conant, H. H. Jonsson, V. Varutbangkul, R. C. Flagan, and J. H. Seinfeld, 2007: The Marine Stratus/Stratocumulus Experiment (MASE): Aerosol-cloud relationships in marine stratocumulus. J. Geophys. Res., 112, D10209, https://doi.org/10.1029/2006JD007985.

    • Search Google Scholar
    • Export Citation
  • Lu, M.-L., G. Feingold, H. H. Jonsson, P. Y. Chuang, H. Gates, R. C. Flagan, and J. H. Seinfeld, 2008: Aerosol–cloud relationships in continental shallow cumulus. J. Geophys. Res., 113, D15201, https://doi.org/10.1029/2007JD009354.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martin, G., D. Johnson, and A. Spice, 1994: The measurement and parameterization of effective radius of droplets in warm stratocumulus clouds. J. Atmos. Sci., 51, 18231842, https://doi.org/10.1175/1520-0469(1994)051<1823:TMAPOE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miles, N. L., J. Verlinde, and E. E. Clothiaux, 2000: Cloud droplet size distributions in low-level stratiform clouds. J. Atmos. Sci., 57, 295311, https://doi.org/10.1175/1520-0469(2000)057<0295:CDSDIL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Niedermeier, D., K. Chang, W. Cantrell, K. K. Chandrakar, D. Ciochetto, and R. A. Shaw, 2018: Observation of a link between energy dissipation rate and oscillation frequency of the large-scale circulation in dry and moist Rayleigh-Bénard turbulence. Phys. Rev. Fluids, 3, 083501, https://doi.org/10.1103/PhysRevFluids.3.083501.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Onishi, R., K. Matsuda, and K. Takahashi, 2015: Lagrangian tracking simulation of droplet growth in turbulence–turbulence enhancement of autoconversion rate. J. Atmos. Sci., 72, 25912607, https://doi.org/10.1175/JAS-D-14-0292.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pandithurai, G., S. Dipu, T. V. Prabha, R. Maheskumar, J. Kulkarni, and B. Goswami, 2012: Aerosol effect on droplet spectral dispersion in warm continental cumuli. J. Geophys. Res., 117, D16202, https://doi.org/10.1029/2011JD016532.

    • Search Google Scholar
    • Export Citation
  • Paoli, R., and K. Shariff, 2009: Turbulent condensation of droplets: Direct simulation and a stochastic model. J. Atmos. Sci., 66, 723740, https://doi.org/10.1175/2008JAS2734.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pawlowska, H., W. W. Grabowski, and J.-L. Brenguier, 2006: Observations of the width of cloud droplet spectra in stratocumulus. Geophys. Res. Lett., 33, L19810, https://doi.org/10.1029/2006GL026841.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peng, Y., and U. Lohmann, 2003: Sensitivity study of the spectral dispersion of the cloud droplet size distribution on the indirect aerosol effect. Geophys. Res. Lett., 30, 1507, https://doi.org/10.1029/2003GL017192.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Politovich, M. K., and W. A. Cooper, 1988: Variability of the supersaturation in cumulus clouds. J. Atmos. Sci., 45, 16511664, https://doi.org/10.1175/1520-0469(1988)045<1651:VOTSIC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pontikis, C., and E. Hicks, 1992: Contribution to the cloud droplet effective radius parameterization. Geophys. Res. Lett., 19, 22272230, https://doi.org/10.1029/92GL02283.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pope, S., 2000: Turbulent Flows. Cambridge University Press, 771 pp.

    • Crossref
    • Export Citation
  • Reutter, P., and Coauthors, 2009: Aerosol- and updraft-limited regimes of cloud droplet formation: Influence of particle number, size and hygroscopicity on the activation of cloud condensation nuclei (CCN). Atmos. Chem. Phys., 9, 70677080, https://doi.org/10.5194/acp-9-7067-2009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rogers, R., and M. Yau, 1989: A Short Course in Cloud Physics. Butterworth-Heinemann, 290 pp.

  • Saito, I., and T. Gotoh, 2018: Turbulence and cloud droplets in cumulus clouds. New J. Phys., 20, 023001, https://doi.org/10.1088/1367-2630/aaa229.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sardina, G., F. Picano, L. Brandt, and R. Caballero, 2015: Continuous growth of droplet size variance due to condensation in turbulent clouds. Phys. Rev. Lett., 115, 184501, https://doi.org/10.1103/PhysRevLett.115.184501.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seinfeld, J. H., and Coauthors, 2016: Improving our fundamental understanding of the role of aerosol–cloud interactions in the climate system. Proc. Natl. Acad. Sci. USA, 113, 57815790, https://doi.org/10.1073/pnas.1514043113.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shraiman, B. I., and E. D. Siggia, 2000: Scalar turbulence. Nature, 405, 639646, https://doi.org/10.1038/35015000.

  • Siebert, H., and R. A. Shaw, 2017: Supersaturation fluctuations during the early stage of cumulus formation. J. Atmos. Sci., 74, 975988, https://doi.org/10.1175/JAS-D-16-0115.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Siewert, C., J. Bec, and G. Krstulovic, 2017: Statistical steady state in turbulent droplet condensation. J. Fluid Mech., 810, 254280, https://doi.org/10.1017/jfm.2016.712.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Twomey, S., 1959: The nuclei of natural cloud formation part II: The supersaturation in natural clouds and the variation of cloud droplet concentration. Pure Appl. Geophys., 43, 243249, https://doi.org/10.1007/BF01993560.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Twomey, S., 1977: The influence of pollution on the shortwave albedo of clouds. J. Atmos. Sci., 34, 11491152, https://doi.org/10.1175/1520-0469(1977)034<1149:TIOPOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, X., and X. Liu, 2009: Analytical three-moment autoconversion parameterization based on generalized gamma distribution. J. Geophys. Res., 114, D17201, https://doi.org/10.1029/2008JD011633.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, F., M. Ovchinnikov, and R. A. Shaw, 2013: Minimalist model of ice microphysics in mixed-phase stratiform clouds. Geophys. Res. Lett., 40, 37563760, https://doi.org/10.1002/grl.50700.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yum, S. S., and J. G. Hudson, 2005: Adiabatic predictions and observations of cloud droplet spectral broadness. Atmos. Res., 73, 203223, https://doi.org/10.1016/j.atmosres.2004.10.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yum, S. S., J. Wang, Y. Liu, G. Senum, S. Springston, R. McGraw, and J. M. Yeom, 2015: Cloud microphysical relationships and their implication on entrainment and mixing mechanism for the stratocumulus clouds measured during the VOCALS project. J. Geophys. Res. Atmos., 120, 50475069, https://doi.org/10.1002/2014JD022802.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, C., and Coauthors, 2006: Aircraft measurements of cloud droplet spectral dispersion and implications for indirect aerosol radiative forcing. Geophys. Res. Lett., 33, L16809, https://doi.org/10.1029/2006GL026653.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1516 473 123
PDF Downloads 900 188 15