Wind Shear Effects on Radiatively and Evaporatively Driven Stratocumulus Tops

Bernhard Schulz Max Planck Institute for Meteorology, Hamburg, Germany

Search for other papers by Bernhard Schulz in
Current site
Google Scholar
PubMed
Close
and
Juan Pedro Mellado Max Planck Institute for Meteorology, Hamburg, Germany

Search for other papers by Juan Pedro Mellado in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Direct numerical simulations resolving meter and submeter scales in the cloud-top region of stratocumulus are used to investigate the interactions between a mean vertical wind shear and in-cloud turbulence driven by evaporative and radiative cooling. There are three major results. First, a critical velocity jump exists, above which shear significantly broadens the entrainment interfacial layer (EIL), enhances cloud-top cooling, and increases the mean entrainment velocity; shear effects are negligible when the velocity jump is below . Second, a depletion velocity jump exists, above which shear-enhanced mixing reduces cloud-top radiative cooling, thereby weakening the large convective motions; shear effects remain localized within the EIL when the velocity jump is below . The critical velocity jump and depletion velocity jump are provided as a function of in-cloud and free-tropospheric conditions, and one finds and for typical subtropical conditions. Third, the individual contributions to the mean entrainment velocity from mixing, radiative cooling, and evaporative cooling strongly depend on the choice of the reference height where the entrainment velocity is calculated. This result implies that the individual contributions to the mean entrainment velocity should be estimated at a comparable height while deriving entrainment-rate parameterizations. A strong shear alters substantially the magnitude and the height where these individual contributions reach their maxima, which further demonstrates the importance of shear on the dynamics of stratocumulus clouds.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Bernhard Schulz, bernhard.schulz@mpimet.mpg.de

Abstract

Direct numerical simulations resolving meter and submeter scales in the cloud-top region of stratocumulus are used to investigate the interactions between a mean vertical wind shear and in-cloud turbulence driven by evaporative and radiative cooling. There are three major results. First, a critical velocity jump exists, above which shear significantly broadens the entrainment interfacial layer (EIL), enhances cloud-top cooling, and increases the mean entrainment velocity; shear effects are negligible when the velocity jump is below . Second, a depletion velocity jump exists, above which shear-enhanced mixing reduces cloud-top radiative cooling, thereby weakening the large convective motions; shear effects remain localized within the EIL when the velocity jump is below . The critical velocity jump and depletion velocity jump are provided as a function of in-cloud and free-tropospheric conditions, and one finds and for typical subtropical conditions. Third, the individual contributions to the mean entrainment velocity from mixing, radiative cooling, and evaporative cooling strongly depend on the choice of the reference height where the entrainment velocity is calculated. This result implies that the individual contributions to the mean entrainment velocity should be estimated at a comparable height while deriving entrainment-rate parameterizations. A strong shear alters substantially the magnitude and the height where these individual contributions reach their maxima, which further demonstrates the importance of shear on the dynamics of stratocumulus clouds.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Bernhard Schulz, bernhard.schulz@mpimet.mpg.de
Save
  • Albrecht, B. A., R. S. Penc, and W. H. Schubert, 1985: An observational study of cloud-topped mixed layers. J. Atmos. Sci., 42, 800822, https://doi.org/10.1175/1520-0469(1985)042<0800:AOSOCT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., 1987: A theory for nonprecipitating moist convection between two parallel plates. Part I: Thermodynamics and “linear” solutions. J. Atmos. Sci., 44, 18091827, https://doi.org/10.1175/1520-0469(1987)044<1809:ATFNMC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brost, R., J. Wyngaard, and D. Lenschow, 1982: Marine stratocumulus layers. Part II: Turbulence budgets. J. Atmos. Sci., 39, 818836, https://doi.org/10.1175/1520-0469(1982)039<0818:MSLPIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brucker, K. A., and S. Sarkar, 2007: Evolution of an initially turbulent stratified shear layer. Phys. Fluids, 19, 105105, https://doi.org/10.1063/1.2756581.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Caughey, S., B. Crease, and W. Roach, 1982: A field study of nocturnal stratocumulus. II: Turbulence structure and entrainment. Quart. J. Roy. Meteor. Soc., 108, 125144, https://doi.org/10.1002/qj.49710845508.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deardorff, J. W., 1970: Convective velocity and temperature scales for the unstable planetary boundary layer and for Rayleigh convection. J. Atmos. Sci., 27, 12111213, https://doi.org/10.1175/1520-0469(1970)027<1211:CVATSF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deardorff, J. W., 1980a: Cloud top entrainment instability. J. Atmos. Sci., 37, 131147, https://doi.org/10.1175/1520-0469(1980)037<0131:CTEI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deardorff, J. W., 1980b: Stratocumulus-capped mixed layers derived from a three-dimensional model. Bound.-Layer Meteor., 18, 495527, https://doi.org/10.1007/BF00119502.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deardorff, J. W., 1981: On the distribution of mean radiative cooling at the top of a stratocumulus-capped mixed layer. Quart. J. Roy. Meteor. Soc., 107, 191202, https://doi.org/10.1002/qj.49710745112.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de Lozar, A., and J. P. Mellado, 2015: Mixing driven by radiative and evaporative cooling at the stratocumulus top. J. Atmos. Sci., 72, 46814700, https://doi.org/10.1175/JAS-D-15-0087.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de Roode, S. R., and Q. Wang, 2007: Do stratocumulus clouds detrain? FIRE I data revisited. Bound.-Layer Meteor., 122, 479491, https://doi.org/10.1007/s10546-006-9113-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de Roode, S. R., A. P. Siebesma, S. D. Gesso, H. J. Jonker, J. Schalkwijk, and J. Sival, 2014: A mixed-layer model study of the stratocumulus response to changes in large-scale conditions. J. Adv. Model. Earth Syst., 6, 12561270, https://doi.org/10.1002/2014MS000347.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dimotakis, P. E., 2005: Turbulent mixing. Annu. Rev. Fluid Mech., 37, 329356, https://doi.org/10.1146/annurev.fluid.36.050802.122015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Driedonks, A., and P. Duynkerke, 1989: Current problems in the stratocumulus-topped atmospheric boundary layer. Bound.-Layer Meteor., 46, 275303, https://doi.org/10.1007/BF00120843.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Faloona, I., and Coauthors, 2005: Observations of entrainment in eastern Pacific marine stratocumulus using three conserved scalars. J. Atmos. Sci., 62, 32683285, https://doi.org/10.1175/JAS3541.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fedorovich, E., and R. Conzemius, 2008: Effects of wind shear on the atmospheric convective boundary layer structure and evolution. Acta Geophys., 56, 114141, https://doi.org/10.2478/s11600-007-0040-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gerber, H., G. Frick, S. Malinowski, J. Brenguier, and F. Burnet, 2005: Holes and entrainment in stratocumulus. J. Atmos. Sci., 62, 443459, https://doi.org/10.1175/JAS-3399.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gerber, H., S. Malinowski, A. Bucholtz, and T. Thorsen, 2014: Radiative cooling of stratocumulus. 14th Conf. on Atmospheric Radiation, Boston, MA, Amer. Meteor. Soc., 9.3, https://ams.confex.com/ams/14CLOUD14ATRAD/webprogram/Paper248451.html.

  • Gerber, H., S. Malinowski, and H. Jonsson, 2016: Evaporative and radiative cooling in POST stratocumulus. J. Atmos. Sci., 73, 38773884, https://doi.org/10.1175/JAS-D-16-0023.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haman, K. E., 2009: Simple approach to dynamics of entrainment interface layers and cloud holes in stratocumulus clouds. Quart. J. Roy. Meteor. Soc., 135, 93100, https://doi.org/10.1002/qj.363.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Howland, C., J. Taylor, and C. Caulfield, 2018: Testing linear marginal stability in stratified shear layers. J. Fluid Mech., 839, R4, https://doi.org/10.1017/jfm.2018.79.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jen-La Plante, I., and Coauthors, 2016: Physics of Stratocumulus Top (POST): Turbulence characteristics. Atmos. Chem. Phys., 16, 97119725, https://doi.org/10.5194/acp-16-9711-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Katzwinkel, J., H. Siebert, and R. Shaw, 2012: Observation of a self-limiting, shear-induced turbulent inversion layer above marine stratocumulus. Bound.-Layer Meteor., 145, 131143, https://doi.org/10.1007/s10546-011-9683-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kopec, M. K., S. P. Malinowski, and Z. P. Piotrowski, 2016: Effects of wind shear and radiative cooling on the stratocumulus-topped boundary layer. Quart. J. Roy. Meteor. Soc., 142, 32223233, https://doi.org/10.1002/qj.2903.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kurowski, J., M. S. P. Malinowski, and W. W. Grabowski, 2009: A numerical investigation of entrainment and transport within a stratocumulus-topped boundary layer. Quart. J. Roy. Meteor. Soc., 135, 7792, https://doi.org/10.1002/qj.354.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Larson, V. E., K. E. Kotenberg, and N. B. Wood, 2007: An analytic longwave radiation formula for liquid layer clouds. Mon. Wea. Rev., 135, 689699, https://doi.org/10.1175/MWR3315.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lele, S. K., 1992: Compact finite difference schemes with spectral-like resolution. J. Comput. Phys., 103, 1642, https://doi.org/10.1016/0021-9991(92)90324-R.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lilly, D. K., 1968: Models of cloud-topped mixed layers under a strong inversion. Quart. J. Roy. Meteor. Soc., 94, 292309, https://doi.org/10.1002/qj.49709440106.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mahrt, L., and D. Lenschow, 1976: Growth dynamics of the convectively mixed layer. J. Atmos. Sci., 33, 4151, https://doi.org/10.1175/1520-0469(1976)033<0041:GDOTCM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Malinowski, S., and Coauthors, 2013: Physics of Stratocumulus Top (POST): Turbulent mixing across capping inversion. Atmos. Chem. Phys., 13, 12 17112 186, https://doi.org/10.5194/acp-13-12171-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mellado, J. P., 2010: The evaporatively driven cloud-top mixing layer. J. Fluid Mech., 660, 536, https://doi.org/10.1017/S0022112010002831.

  • Mellado, J. P., 2017: Cloud-top entrainment in stratocumulus clouds. Annu. Rev. Fluid Mech., 49, 145169, https://doi.org/10.1146/annurev-fluid-010816-060231.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mellado, J. P., and C. Ansorge, 2012: Factorization of the Fourier transform of the pressure-Poisson equation using finite differences in colocated grids. Z. Angew. Math. Mech., 92, 380392, https://doi.org/10.1002/zamm.201100078.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mellado, J. P., B. Stevens, H. Schmidt, and N. Peters, 2009: Buoyancy reversal in cloud-top mixing layers. Quart. J. Roy. Meteor. Soc., 135, 963978, https://doi.org/10.1002/qj.417.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mellado, J. P., B. Stevens, H. Schmidt, and N. Peters, 2010: Two-fluid formulation of the cloud-top mixing layer for direct numerical simulation. Theor. Comput. Fluid Dyn., 24, 511536, https://doi.org/10.1007/s00162-010-0182-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mellado, J. P., B. Stevens, and H. Schmidt, 2014: Wind shear and buoyancy reversal at the top of stratocumulus. J. Atmos. Sci., 71, 10401057, https://doi.org/10.1175/JAS-D-13-0189.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mellado, J. P., C. Bretherton, B. Stevens, and M. Wyant, 2018: DNS and LES for simulating stratocumulus: Better together. J. Adv. Model. Earth Syst., https://doi.org/10.1029/2018MS001312, in press.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moeng, C.-H., D. H. Lenschow, and D. A. Randall, 1995: Numerical investigations of the roles of radiative and evaporative feedbacks in stratocumulus entrainment and breakup. J. Atmos. Sci., 52, 28692883, https://doi.org/10.1175/1520-0469(1995)052<2869:NIOTRO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nicholls, S., and J. Leighton, 1986: An observational study of the structure of stratiform cloud sheets: Part I. Structure. Quart. J. Roy. Meteor. Soc., 112, 431460, https://doi.org/10.1002/qj.49711247209.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pauluis, O., and J. Schumacher, 2010: Idealized moist Rayleigh-Bénard convection with piecewise linear equation of state. Commun. Math. Sci., 8, 295319, https://doi.org/10.4310/CMS.2010.v8.n1.a15.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pedersen, J. G., S. P. Malinowski, and W. W. Grabowski, 2016: Resolution and domain-size sensitivity in implicit large-eddy simulation of the stratocumulus-topped boundary layer. J. Adv. Model. Earth Syst., 8, 885903, https://doi.org/10.1002/2015MS000572.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pedersen, J. G., Y.-F. Ma, W. W. Grabowski, and S. P. Malinowski, 2018: Anisotropy of observed and simulated turbulence in marine stratocumulus. J. Adv. Model. Earth Syst., 10, 500515, https://doi.org/10.1002/2017MS001140.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Randall, D. A., 1980: Conditional instability of the first kind upside-down. J. Atmos. Sci., 37, 125130, https://doi.org/10.1175/1520-0469(1980)037<0125:CIOTFK>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shao, Q., D. A. Randall, C.-H. Moeng, and R. E. Dickinson, 1997: A method to determine the amounts of cloud-top radiative and evaporative cooling in a stratocumulus-topped boundary layer. Quart. J. Roy. Meteor. Soc., 123, 21872213, https://doi.org/10.1002/qj.49712354403.

    • Search Google Scholar
    • Export Citation
  • Siems, S. T., and C. S. Bretherton, 1992: A numerical investigation of cloud-top entrainment instability and related experiments. Quart. J. Roy. Meteor. Soc., 118, 787818, https://doi.org/10.1002/qj.49711850702.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smyth, W. D., and J. N. Moum, 2000: Length scales of turbulence in stably stratified mixing layers. Phys. Fluids, 12, 1327, https://doi.org/10.1063/1.870385.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stevens, B., 2002: Entrainment in stratocumulus-topped mixed layers. Quart. J. Roy. Meteor. Soc., 128, 26632690, https://doi.org/10.1256/qj.01.202.

  • Stevens, B., C.-H. Moeng, and P. P. Sullivan, 1999: Large-eddy simulations of radiatively driven convection: Sensitivities to the representation of small scales. J. Atmos. Sci., 56, 39633984, https://doi.org/10.1175/1520-0469(1999)056<3963:LESORD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stevens, B., and Coauthors, 2003: On entrainment rates in nocturnal marine stratocumulus. Quart. J. Roy. Meteor. Soc., 129, 34693493, https://doi.org/10.1256/qj.02.202.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stevens, B., and Coauthors, 2005: Evaluation of large-eddy simulations via observations of nocturnal marine stratocumulus. Mon. Wea. Rev., 133, 14431462, https://doi.org/10.1175/MWR2930.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sullivan, P. P., C.-H. Moeng, B. Stevens, D. H. Lenschow, and S. D. Mayor, 1998: Structure of the entrainment zone capping the convective atmospheric boundary layer. J. Atmos. Sci., 55, 30423064, https://doi.org/10.1175/1520-0469(1998)055<3042:SOTEZC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vanzanten, M. C., 2002: Radiative and evaporative cooling in the entrainment zone of stratocumulus—The role of longwave radiative cooling above cloud top. Bound.-Layer Meteor., 102, 253280, https://doi.org/10.1023/A:1013129713315.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, S., J.-C. Golaz, and Q. Wang, 2008: Effect of intense wind shear across the inversion on stratocumulus clouds. Geophys. Res. Lett., 35, L15814, https://doi.org/10.1029/2008GL033865.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, S., X. Zheng, and Q. Jiang, 2012: Strongly sheared stratocumulus convection: An observationally based large-eddy simulation study. Atmos. Chem. Phys., 12, 52235235, https://doi.org/10.5194/acp-12-5223-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wood, R., 2012: Stratocumulus clouds. Mon. Wea. Rev., 140, 23732423, https://doi.org/10.1175/MWR-D-11-00121.1.

  • Yamaguchi, T., and D. A. Randall, 2012: Cooling of entrained parcels in a large-eddy simulation. J. Atmos. Sci., 69, 11181136, https://doi.org/10.1175/JAS-D-11-080.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 210 57 2
PDF Downloads 190 58 3