A Numerical Study on the Aerodynamics of Freely Falling Planar Ice Crystals

Joseph J. Nettesheim Department of Atmospheric and Oceanic Sciences, University of Wisconsin–Madison, Madison, Wisconsin

Search for other papers by Joseph J. Nettesheim in
Current site
Google Scholar
PubMed
Close
and
Pao K. Wang Department of Atmospheric and Oceanic Sciences, University of Wisconsin–Madison, Madison, Wisconsin, and Research Center for Environmental Changes, Academia Sinica, Taipei, Taiwan

Search for other papers by Pao K. Wang in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Fluid flow fields and fall patterns of falling planar ice crystals are studied by numerically solving the unsteady, incompressible Navier–Stokes equations using a commercially available computational fluid dynamics package. The ice crystal movement and orientation are explicitly simulated based on hydrodynamic forces and torques representing the 6 degrees of freedom. This study extends the current framework by investigating four planar-type ice crystals: crystals with sector-like branches, crystals with broad branches, stellar crystals, and ordinary dendritic crystals. The crystals range from 0.2 to 5 mm in maximum dimension, corresponding to Reynolds number ranges from 0.2 to 384. The results indicate that steady flow fields are generated for flows with Reynolds numbers less than 100; larger plates generate unsteady flow fields and exhibit horizontal translation, rotation, and oscillation. Empirical formulas for the drag coefficient, 900-hPa terminal velocity, and ventilation effect are given. Fall trajectory, pressure distribution, wake structure, vapor field, and vorticity field are examined.

Current affiliation: National Weather Service, Silver Spring, Maryland.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Prof. Pao K. Wang, pwang1@wisc.edu

Abstract

Fluid flow fields and fall patterns of falling planar ice crystals are studied by numerically solving the unsteady, incompressible Navier–Stokes equations using a commercially available computational fluid dynamics package. The ice crystal movement and orientation are explicitly simulated based on hydrodynamic forces and torques representing the 6 degrees of freedom. This study extends the current framework by investigating four planar-type ice crystals: crystals with sector-like branches, crystals with broad branches, stellar crystals, and ordinary dendritic crystals. The crystals range from 0.2 to 5 mm in maximum dimension, corresponding to Reynolds number ranges from 0.2 to 384. The results indicate that steady flow fields are generated for flows with Reynolds numbers less than 100; larger plates generate unsteady flow fields and exhibit horizontal translation, rotation, and oscillation. Empirical formulas for the drag coefficient, 900-hPa terminal velocity, and ventilation effect are given. Fall trajectory, pressure distribution, wake structure, vapor field, and vorticity field are examined.

Current affiliation: National Weather Service, Silver Spring, Maryland.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Prof. Pao K. Wang, pwang1@wisc.edu
Save
  • ANSYS, 2013: ANSYS Fluent theory guide: Release 15.0. ANSYS Tech. Rep., 814 pp.

  • Auer, A. H., and D. L. Veal, 1970: The dimension of ice crystals in natural clouds. J. Atmos. Sci., 27, 919926, https://doi.org/10.1175/1520-0469(1970)027<0919:TDOICI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Böhm, H. P., 1989: A general equation for the terminal fall speed of solid hydrometeors. J. Atmos. Sci., 46, 24192427, https://doi.org/10.1175/1520-0469(1989)046<2419:AGEFTT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bréon, F.-M., and B. Dubrulle, 2004: Horizontally oriented plates in clouds. J. Atmos. Sci., 61, 28882898, https://doi.org/10.1175/JAS-3309.1.

  • Cheng, K.-Y., P. K. Wang, and C.-K. Wang, 2014: A numerical study on the ventilation coefficients of falling hailstones. J. Atmos. Sci., 71, 26252634, https://doi.org/10.1175/JAS-D-13-0229.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cheng, K.-Y., P. K. Wang, and T. Hashino, 2015: A numerical study on the attitudes and aerodynamics of freely falling hexagonal ice plates. J. Atmos. Sci., 72, 36853698, https://doi.org/10.1175/JAS-D-15-0059.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dennis, S. C. R., and G.-Z. Chang, 1969: Numerical integration of the Navier‐Stokes equations for steady two-dimensional flow. Phys. Fluids, 12 (Suppl. II), 8893, https://doi.org/10.1063/1.1692474.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Field, S. B., and M. Klaus, 1997: Chaotic dynamics of falling disks. Nature, 388, 252254, https://doi.org/10.1038/40817.

  • Freitas, C. J., R. L. Street, A. N. Findikakis, and J. R. Koseff, 1985: Numerical simulation of three-dimensional flow in a cavity. Int. J. Numer. Methods Fluids, 5, 561575, https://doi.org/10.1002/fld.1650050606.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gravner, J., and D. Griffeath, 2009: Modeling snow-crystal growth: A three-dimensional mesoscopic approach. Phys. Rev., 79E, 011601, https://doi.org/10.1103/PhysRevE.79.011601.

    • Search Google Scholar
    • Export Citation
  • Hall, W. D., and H. R. Pruppacher, 1976: The survival of ice particles falling from cirrus clouds in subsaturated air. J. Atmos. Sci., 33, 19952006, https://doi.org/10.1175/1520-0469(1976)033<1995:TSOIPF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hashino, T., M. Chiruta, D. Polzin, A. Kubicek, and P. K. Wang, 2014: Numerical simulation of the flow fields around falling ice crystals with inclined orientation and the hydrodynamic torque. Atmos. Res., 150, 7996, https://doi.org/10.1016/j.atmosres.2014.07.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hashino, T., K.-Y. Cheng, C.-C. Chueh, and P. K. Wang, 2016: Numerical study of motion and stability of falling columnar crystals. J. Atmos. Sci., 73, 19231942, https://doi.org/10.1175/JAS-D-15-0219.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., and M. Kajikawa, 1987: An improved approach to calculating terminal velocities of plate-like crystals and graupel. J. Atmos. Sci., 44, 10881099, https://doi.org/10.1175/1520-0469(1987)044<1088:AIATCT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., and C. D. Westbrook, 2010: Advances in the estimation of ice particle fall speeds using laboratory and field measurements. J. Atmos. Sci., 67, 24692482, https://doi.org/10.1175/2010JAS3379.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ishimoto, H., 2008: Radar backscattering computations for fractal-shaped snowflakes. J. Meteor. Soc. Japan, 86, 459469, https://doi.org/10.2151/jmsj.86.459.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Issa, R. I., 1986: Solution of the implicitly discretised fluid flow equations by operator-splitting. J. Comput. Phys., 62, 4065, https://doi.org/10.1016/0021-9991(86)90099-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jayaweera, K. O. L. F., and B. J. Mason, 1965: The behaviour of freely falling cylinders and cones in a viscous fluid. J. Fluid Mech., 22, 709720, https://doi.org/10.1017/S002211206500109X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jayaweera, K. O. L. F., and B. J. Mason, 1966: The falling motions of loaded cylinders and discs simulating snow crystals. Quart. J. Roy. Meteor. Soc., 92, 151156, https://doi.org/10.1002/qj.49709239115.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ji, W., and P. K. Wang, 1990: Numerical simulation of three-dimensional unsteady viscous flow past fixed hexagonal ice crystals in the air—Preliminary results. Atmos. Res., 25, 539557, https://doi.org/10.1016/0169-8095(90)90037-D.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ji, W., and P. K. Wang, 1991: Numerical simulation of three-dimensional unsteady viscous flow past finite cylinders in an unbounded fluid at low intermediate Reynolds numbers. Theor. Comput. Fluid Dyn., 3, 4359, https://doi.org/10.1007/BF00271515.

    • Search Google Scholar
    • Export Citation
  • Ji, W., and P. K. Wang, 1999: Ventilation coefficients for falling ice crystals in the atmosphere at low–intermediate Reynolds numbers. J. Atmos. Sci., 56, 829836, https://doi.org/10.1175/1520-0469(1999)056<0829:VCFFIC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kajikawa, M., 1992: Observations of the falling motion of plate-like snow crystals part I: The free-fall patterns and velocity. J. Meteor. Soc. Japan, 70, 19, https://doi.org/10.2151/jmsj1965.70.1_1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kawaguti, M., 1953: Numerical solution of the Navier-Stokes equations for the flow around a circular cylinder at Reynolds number 40. J. Phys. Soc. Japan, 8, 747757, https://doi.org/10.1143/JPSJ.8.747.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • List, R., and R. S. Schemenauer, 1971: Free-fall behavior of planar snow crystals, conical graupel and small hail. J. Atmos. Sci., 28, 110115, https://doi.org/10.1175/1520-0469(1971)028<0110:FFBOPS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Magono, C., and C. W. Lee, 1966: Meteorological classification of natural snow crystals. J. Fac. Sci. Hokkaido Univ. Ser. 7, 2, 321335.

    • Search Google Scholar
    • Export Citation
  • Masliyah, J. H., and N. Epstein, 1970: Numerical study of steady flow past spheroids. J. Fluid Mech., 44, 493512, https://doi.org/10.1017/S0022112070001957.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matrosov, S. Y., 2007: Modeling backscatter properties of snowfall at millimeter wavelengths. J. Atmos. Sci., 64, 17271736, https://doi.org/10.1175/JAS3904.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matrosov, S. Y., R. F. Reinking, and I. V. Djalalova, 2005: Inferring fall attitudes of pristine dendritic crystals from polarimetric radar data. J. Atmos. Sci., 62, 241250, https://doi.org/10.1175/JAS-3356.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mitchell, D. L., and A. J. Heymsfield, 2005: Refinements in the treatment of ice particle terminal velocities, highlighting aggregates. J. Atmos. Sci., 62, 16371644, https://doi.org/10.1175/JAS3413.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nakaya, U., and T. J. Terada, 1935: Simultaneous observations of the mass, falling velocity and form of individual snow crystals. J. Fac. Sci. Hokkaido Imp. Univ. Ser. 2, 1, 191200.

    • Search Google Scholar
    • Export Citation
  • Nieuwstadt, F., and H. B. Keller, 1973: Viscous flow past circular cylinders. Comput. Fluids, 1, 5971, https://doi.org/10.1016/0045-7930(73)90026-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pitter, R. L., and H. R. Pruppacher, 1974: A numerical investigation of collision efficiencies of simple ice plates colliding with supercooled water drops. J. Atmos. Sci., 31, 551559, https://doi.org/10.1175/1520-0469(1974)031<0551:ANIOCE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pitter, R. L., H. R. Pruppacher, and A. E. Hamielec, 1973: A numerical study of viscous flow past a thin oblate spheroid at low and intermediate Reynolds numbers. J. Atmos. Sci., 30, 125134, https://doi.org/10.1175/1520-0469(1973)030<0125:ANSOVF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pitter, R. L., H. R. Pruppacher, and A. E. Hamielec, 1974: A numerical study of the effect of forced convection on mass transport from a thin oblate spheroid of ice in air. J. Atmos. Sci., 31, 10581066, https://doi.org/10.1175/1520-0469(1974)031<1058:ANSOTE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pruppacher, H. R., and J. D. Klett, 1997: Microphysics of Clouds and Precipitation. 2nd ed. Kluwer Academic, 954 pp.

  • Rimon, Y., and H. J. Lugt, 1969: Laminar flows past oblate spheroids of various thicknesses. Phys. Fluids, 12, 24652472, https://doi.org/10.1063/1.1692382.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sasyo, Y., 1971: Study of the formation of precipitation by the aggregation of snow particles and the accretion of cloud droplets on snowflakes. Pap. Meteor. Geophys., 22, 69142, https://doi.org/10.2467/mripapers1950.22.2_69.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schlamp, R. J., H. R. Pruppacher, and A. E. Hamielec, 1975: A numerical investigation of the efficiency with which simple columnar ice crystals collide with supercooled water drops. J. Atmos. Sci., 32, 23302337, https://doi.org/10.1175/1520-0469(1975)032<2330:ANIOTE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stringham, G. E., D. B. Simons, and H. P. Guy, 1969: The behavior of large particles falling in quiescent liquids. Geological Survey Professional Paper 562-C, 36 pp., http://pubs.er.usgs.gov/publication/pp562C.

    • Crossref
    • Export Citation
  • Takahashi, T., 2014: Influence of liquid water content and temperature on the form and growth of branched planar snow crystals in a cloud. J. Atmos. Sci., 71, 41274142, https://doi.org/10.1175/JAS-D-14-0043.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Takano, Y., and K. N. Liou, 1993: Transfer of polarized infrared radiation in optically anisotropic media: Application to horizontally oriented ice crystals. J. Opt. Soc. Amer., 10A, 12431256, https://doi.org/10.1364/JOSAA.10.001243.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thom, A., 1933: The flow past circular cylinders at low speeds. Proc. Roy. Soc. London, 141A, 651669, https://doi.org/10.1098/rspa.1933.0146.

    • Search Google Scholar
    • Export Citation
  • Vittori, O. A., and V. Prodi, 1967: Scavenging of atmospheric particles by ice crystals. J. Atmos. Sci., 24, 533538, https://doi.org/10.1175/1520-0469(1967)024<0533:SOAPBI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, P. K., 1982: Mathematical description of the shape of conical hydrometeors. J. Atmos. Sci., 39, 26152622, https://doi.org/10.1175/1520-0469(1982)039<2615:MDOTSO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, P. K., 2001: Ice Microdynamics. Academic Press, 267 pp.

  • Wang, P. K., 2013: Physics and Dynamics of Clouds and Precipitation. Cambridge University Press, 467 pp.

    • Crossref
    • Export Citation
  • Wang, P. K., and S. M. Denzer, 1983: Mathematical description of the shape of plane hexagonal snow crystals. J. Atmos. Sci., 40, 10241028, https://doi.org/10.1175/1520-0469(1983)040<1024:MDOTSO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, P. K., and W. Ji, 1997: Numerical simulation of three-dimensional unsteady flow past ice crystals. J. Atmos. Sci., 54, 22612274, https://doi.org/10.1175/1520-0469(1997)054<2261:NSOTDU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, P. K., and W. Ji, 2000: Collision efficiencies of ice crystals at low–intermediate Reynolds numbers colliding with supercooled cloud droplets: A numerical study. J. Atmos. Sci., 57, 10011009, https://doi.org/10.1175/1520-0469(2000)057<1001:CEOICA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Willmarth, W., N. Hawk, and R. Harvey, 1964: Steady and unsteady motions and wakes of freely falling disks. Phys. Fluids, 7, 197208, https://doi.org/10.1063/1.1711133.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 561 224 9
PDF Downloads 407 106 7