A Simple Model for the Anomalous Counterclockwise Turning of the Surface Wind with Time over the Great Plains of the United States

Richard Rotunno National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Richard Rotunno in
Current site
Google Scholar
PubMed
Close
,
Glen S. Romine National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Glen S. Romine in
Current site
Google Scholar
PubMed
Close
, and
Howard B. Bluestein School of Meteorology, University of Oklahoma, Norman, Oklahoma

Search for other papers by Howard B. Bluestein in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A recent study found that surface hodographs over the Great Plains of the United States turn in a counterclockwise direction with time. This observed turning is opposite of the clockwise turning observed (and expected, based on theory) at higher altitudes. Using a mesoscale forecast model, the same study shows that it has the same hodograph behavior as found in the observations. The study further shows that the reason for this anomalous counterclockwise turning is the decoupling of the surface layer from the boundary layer after sunset and its recoupling after sunrise. The present paper presents a simple model for this behavior by extending a recent analytical model for the diurnal oscillation to include the surface-layer effect. In addition, selected solution features are analyzed in terms of several of the nondimensional input parameters.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Richard Rotunno, rotunno@ucar.edu

Abstract

A recent study found that surface hodographs over the Great Plains of the United States turn in a counterclockwise direction with time. This observed turning is opposite of the clockwise turning observed (and expected, based on theory) at higher altitudes. Using a mesoscale forecast model, the same study shows that it has the same hodograph behavior as found in the observations. The study further shows that the reason for this anomalous counterclockwise turning is the decoupling of the surface layer from the boundary layer after sunset and its recoupling after sunrise. The present paper presents a simple model for this behavior by extending a recent analytical model for the diurnal oscillation to include the surface-layer effect. In addition, selected solution features are analyzed in terms of several of the nondimensional input parameters.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Richard Rotunno, rotunno@ucar.edu
Save
  • Blackadar, A. K., 1957: Boundary layer wind maxima and their significance for the growth of nocturnal inversions. Bull. Amer. Meteor. Soc., 38, 283290.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bluestein, H. B., G. S. Romine, R. Rotunno, D. W. Reif, and C. C. Weiss, 2018: On the anomalous counterclockwise turning of the surface wind with time in the plains of the United States. Mon. Wea. Rev., 146, 467484, https://doi.org/10.1175/MWR-D-17-0297.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bonner, W. D., and J. Paegle, 1970: Diurnal variations in boundary layer winds over the south-central United States in summer. Mon. Wea. Rev., 98, 735744, https://doi.org/10.1175/1520-0493(1970)098<0735:DVIBLW>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Du, Y., and R. Rotunno, 2014: A simple analytical model of the nocturnal low-level jet over the Great Plains of the United States. J. Atmos. Sci., 71, 36743683, https://doi.org/10.1175/JAS-D-14-0060.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Glickman, T., Ed., 2000: Glossary of Meteorology. 2nd ed. Amer. Meteor. Soc., 855 pp., http://glossary.ametsoc.org/.

  • Holton, J. R., 1967: The diurnal boundary layer wind oscillation over sloping terrain. Tellus, 19A, 199205, https://doi.org/10.1111/j.2153-3490.1967.tb01473.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lumley, J. L., and H. A. Panofsky, 1964: The Structure of Atmospheric Turbulence. Wiley, 239 pp.

  • Rotunno, R., 1983: On the linear theory of the land and sea breeze. J. Atmos. Sci., 40, 19992009, https://doi.org/10.1175/1520-0469(1983)040<1999:OTLTOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shapiro, A., and E. Fedorovich, 2010: Analytical description of a nocturnal low-level jet. Quart. J. Roy. Meteor. Soc., 136, 12551262, https://doi.org/10.1002/qj.628.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shapiro, A., E. Fedorovich, and S. Rahimi, 2016: A unified theory for the Great Plains nocturnal low-level jet. J. Atmos. Sci., 73, 30373057, https://doi.org/10.1175/JAS-D-15-0307.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 213 50 1
PDF Downloads 176 50 3