Isolating the Effects of Moisture Entrainment on Convectively Coupled Equatorial Waves in an Aquaplanet GCM

Simon C. Peatman National Centre for Atmospheric Science, Department of Meteorology, University of Reading, Reading, United Kingdom

Search for other papers by Simon C. Peatman in
Current site
Google Scholar
PubMed
Close
,
John Methven National Centre for Atmospheric Science, Department of Meteorology, University of Reading, Reading, United Kingdom

Search for other papers by John Methven in
Current site
Google Scholar
PubMed
Close
, and
Steven J. Woolnough National Centre for Atmospheric Science, Department of Meteorology, University of Reading, Reading, United Kingdom

Search for other papers by Steven J. Woolnough in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The rate of humidity entrainment in the convective parameterization scheme in a general circulation model affects the simulation of convectively coupled waves. However, it is unclear whether this is caused directly by the effects of entrainment on waves or indirectly through associated impacts such as on the basic state. Therefore, using an aquaplanet model, we employ a novel framework in which we entrain a weighted average of the resolved humidity field and a prescribed zonally symmetric field, with the weighting controlled by a decoupling parameter. Hence, we can vary the entrainment rate of basic-state humidity independently of the entrainment of humidity perturbations, simultaneously minimizing changes in the basic state. Thus, we isolate the effect of moisture entrainment on the waves. Enhancing the entrainment rate increases spectral power over all zonal wavenumbers and frequencies, with an increase in the ratio of eastward-to-westward power. The Kelvin wave speed decreases as entrainment increases, which can be partially accounted for by an associated change in basic-state humidity. Increasing the decoupling parameter reduces spectral power in Kelvin waves relative to the background, with only long waves still prominent when entrainment is almost fully decoupled from the resolved moisture field, suggesting the wave structure in humidity is required for convection to organize into short-wave structures. For long waves, the increase in the ratio of eastward-to-westward power as entrainment rate increases cannot be explained by the changes in the coupling with the wave structure in humidity but is consistent with the changes in the basic state.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dr. Simon Peatman, s.peatman@reading.ac.uk

Abstract

The rate of humidity entrainment in the convective parameterization scheme in a general circulation model affects the simulation of convectively coupled waves. However, it is unclear whether this is caused directly by the effects of entrainment on waves or indirectly through associated impacts such as on the basic state. Therefore, using an aquaplanet model, we employ a novel framework in which we entrain a weighted average of the resolved humidity field and a prescribed zonally symmetric field, with the weighting controlled by a decoupling parameter. Hence, we can vary the entrainment rate of basic-state humidity independently of the entrainment of humidity perturbations, simultaneously minimizing changes in the basic state. Thus, we isolate the effect of moisture entrainment on the waves. Enhancing the entrainment rate increases spectral power over all zonal wavenumbers and frequencies, with an increase in the ratio of eastward-to-westward power. The Kelvin wave speed decreases as entrainment increases, which can be partially accounted for by an associated change in basic-state humidity. Increasing the decoupling parameter reduces spectral power in Kelvin waves relative to the background, with only long waves still prominent when entrainment is almost fully decoupled from the resolved moisture field, suggesting the wave structure in humidity is required for convection to organize into short-wave structures. For long waves, the increase in the ratio of eastward-to-westward power as entrainment rate increases cannot be explained by the changes in the coupling with the wave structure in humidity but is consistent with the changes in the basic state.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dr. Simon Peatman, s.peatman@reading.ac.uk
Save
  • Agustí-Panareda, A., and A. C. M. Beljaars, 2008: ECMFW’s contribution to AMMA. ECMWF Newsletter, No. 115, ECMWF, Reading, United Kingdom, 19–27, https://doi.org/10.21957/28vtm6dpt6.

    • Crossref
    • Export Citation
  • Arnold, N. P., and D. A. Randall, 2015: Global-scale convective aggregation: Implications for the Madden-Julian oscillation. J. Adv. Model. Earth Syst., 7, 14991518, https://doi.org/10.1002/2015MS000498.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bechtold, P., M. Köhler, T. Jung, F. Doblas-Reyes, M. Leutbecher, M. J. Rodwell, F. Vitart, and G. Balsamo, 2008: Advances in simulating atmospheric variability with the ECMWF model: From synoptic to decadal time-scales. Quart. J. Roy. Meteor. Soc., 134, 13371351, https://doi.org/10.1002/qj.289.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blackburn, M., and B. J. Hoskins, 2013: Context and aims of the Aqua-Planet Experiment. J. Meteor. Soc. Japan, 91A, 115, https://doi.org/10.2151/jmsj.2013-A01.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bush, S. J., A. G. Turner, S. J. Woolnough, G. M. Martin, and N. P. Klingaman, 2015: The effect of increased convective entrainment on Asian monsoon biases in the MetUM general circulation model. Quart. J. Roy. Meteor. Soc., 141, 311326, https://doi.org/10.1002/qj.2371.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cornforth, R. J., 2013: West African monsoon 2012. Weather, 68, 256263, https://doi.org/10.1002/wea.2161.

  • Crum, F. X., and T. J. Dunkerton, 1992: Analytic and numerical models of wave-CISK with conditional heating. J. Atmos. Sci., 49, 16931708, https://doi.org/10.1175/1520-0469(1992)049<1693:AANMOW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dunkerton, T. J., and F. X. Crum, 1991: Scale selection and propagation of wave-CISK with conditional heating. J. Meteor. Soc. Japan, 69, 449458, https://doi.org/10.2151/jmsj1965.69.4_449.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1980: Some simple solutions for heat-induced tropical circulation. Quart. J. Roy. Meteor. Soc., 106, 447462, https://doi.org/10.1002/qj.49710644905.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gonzalez, A. O., and X. Jiang, 2017: Winter mean lower tropospheric moisture over the Maritime Continent as a climate model diagnostic metric for the propagation of the Madden-Julian oscillation. Geophys. Res. Lett., 44, 25882596, https://doi.org/10.1002/2016GL072430.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grant, A. L. M., and A. R. Brown, 1999: A similarity hypothesis for shallow-cumulus transports. Quart. J. Roy. Meteor. Soc., 125, 19131936, https://doi.org/10.1002/qj.49712555802.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gregory, D., and P. R. Rowntree, 1990: A mass flux convection scheme with representation of cloud ensemble characteristics and stability-dependent closure. Mon. Wea. Rev., 118, 14831506, https://doi.org/10.1175/1520-0493(1990)118<1483:AMFCSW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haertel, P. T., K. H. Straub, and A. Budsock, 2015: Transforming circumnavigating Kelvin waves that initiate and dissipate the Madden–Julian oscillation. Quart. J. Roy. Meteor. Soc., 141, 15861602, https://doi.org/10.1002/qj.2461.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hall, N. M. J., G. N. Kiladis, and C. D. Thorncroft, 2006: Three-dimensional structure and dynamics of African easterly waves. Part II: Dynamical modes. J. Atmos. Sci., 63, 22312245, https://doi.org/10.1175/JAS3742.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hayashi, Y., 1970: Theory of large-scale equatorial waves generated by condensation heat and accelerating the zonal wind. J. Meteor. Soc. Japan, 48, 140160, https://doi.org/10.2151/jmsj1965.48.2_140.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hirons, L. C., P. M. Inness, F. Vitart, and P. Bechtold, 2013a: Understanding advances in the simulation of intraseasonal variability in the ECMWF model. Part I: The representation of the MJO. Quart. J. Roy. Meteor. Soc., 139, 14171426, https://doi.org/10.1002/qj.2060.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hirons, L. C., P. M. Inness, F. Vitart, and P. Bechtold, 2013b: Understanding advances in the simulation of intraseasonal variability in the ECMWF model. Part II: The application of process-based diagnostics. Quart. J. Roy. Meteor. Soc., 139, 14271444, https://doi.org/10.1002/qj.2059.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hirota, N., Y. N. Takayabu, M. Watanabe, M. Kimoto, and M. Chikira, 2014: Role of convective entrainment in spatial distributions of and temporal variations in precipitation over tropical oceans. J. Climate, 27, 87078723, https://doi.org/10.1175/JCLI-D-13-00701.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holton, J. R., 2004: An Introduction to Dynamical Meteorology. 4th ed. Elsevier, 535 pp.

  • James, I. N., 1995: Introduction to Circulating Atmospheres. 1st ed. Cambridge University Press, 422 pp.

  • Janicot, S., F. Mounier, and A. Diedhiou, 2008: Les ondes atmosphériques d’échelle synoptique dans la mousson d’Afrique de l’Ouest et centrale: ondes d’est et ondes de Kelvin. Sécheresse, 19, 1322, https://doi.org/10.1684/sec.2008.0115.

    • Search Google Scholar
    • Export Citation
  • Kang, I.-S., F. Liu, M.-S. Ahn, Y.-M. Yang, and B. Wang, 2013: The role of SST structure in convectively coupled Kelvin–Rossby waves and its implications for MJO formation. J. Climate, 26, 59155930, https://doi.org/10.1175/JCLI-D-12-00303.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kiladis, G. N., C. D. Thorncroft, and N. M. J. Hall, 2006: Three-dimensional structure and dynamics of African easterly waves. Part I: Observations. J. Atmos. Sci., 63, 22122230, https://doi.org/10.1175/JAS3741.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kiladis, G. N., M. C. Wheeler, P. T. Haertel, K. H. Straub, and P. E. Roundy, 2009: Convectively coupled equatorial waves. Rev. Geophys., 47, RG2003, https://doi.org/10.1029/2008RG000266.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, D., and Coauthors, 2014: Process-oriented MJO simulation diagnostic: Moisture sensitivity of simulated convection. J. Climate, 27, 53795395, https://doi.org/10.1175/JCLI-D-13-00497.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klingaman, N. P., and S. J. Woolnough, 2014: Using a case-study approach to improve the Madden–Julian oscillation in the Hadley Centre model. Quart. J. Roy. Meteor. Soc., 140, 24912505, https://doi.org/10.1002/qj.2314.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lau, K.-M., and L. Peng, 1987: Origin of low-frequency (intraseasonal) oscillation in the tropical atmosphere. Part I: Basic theory. J. Atmos. Sci., 44, 950972, https://doi.org/10.1175/1520-0469(1987)044<0950:OOLFOI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, M.-I., I.-S. Kang, and B. E. Mapes, 2003: Impacts of cumulus convection parameterization on aqua-planet AGCM simulations of tropical intraseasonal variability. J. Meteor. Soc. Japan, 81, 963992, https://doi.org/10.2151/jmsj.81.963.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, J.-L., and Coauthors, 2006: Tropical intraseasonal variability in 14 IPCC AR4 climate models. Part I: Convective signals. J. Climate, 19, 26652690, https://doi.org/10.1175/JCLI3735.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lindzen, R. S., 1974: Wave-CISK in the tropics. J. Atmos. Sci., 31, 156179, https://doi.org/10.1175/1520-0469(1974)031<0156:WCITT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Y., L. Guo, G. Wu, and Z. Wang, 2010: Sensitivity of ITCZ configuration to cumulus convective parameterizations on an aqua planet. Climate Dyn., 34, 223240, https://doi.org/10.1007/s00382-009-0652-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matsuno, T., 1966: Quasi-geostrophic motions in the equatorial area. J. Meteor. Soc. Japan, 44, 2543, https://doi.org/10.2151/jmsj1965.44.1_25.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matthews, A. J., 2000: Propagation mechanisms for the Madden-Julian oscillation. Quart. J. Roy. Meteor. Soc., 126, 26372651, https://doi.org/10.1002/qj.49712656902.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matthews, A. J., and J. Lander, 1999: Physical and numerical contributions to the structure of Kelvin wave-CISK modes in a spectral transform model. J. Atmos. Sci., 56, 40504058, https://doi.org/10.1175/1520-0469(1999)056<4050:PANCTT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mekonnen, A., C. D. Thorncroft, A. Aiyyer, and G. N. Kiladis, 2008: Convectively coupled Kelvin waves over tropical Africa during the boreal summer: Structure and variability. J. Climate, 21, 66496667, https://doi.org/10.1175/2008JCLI2008.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Möbis, B., and B. Stevens, 2012: Factors controlling the position of the intertropical convergence zone on an aquaplanet. J. Adv. Model. Earth Syst., 4, M00A04, https://doi.org/10.1029/2012MS000199.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mounier, F., G. N. Kiladis, and S. Janicot, 2007: Analysis of the dominant mode of convectively coupled Kelvin waves in the West African monsoon. J. Climate, 20, 14871503, https://doi.org/10.1175/JCLI4059.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oueslati, B., and G. Bellon, 2013: Convective entrainment and large-scale organization of tropical precipitation: Sensitivity of the CNRM-CM5 hierarchy of models. J. Climate, 26, 29312946, https://doi.org/10.1175/JCLI-D-12-00314.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rajendran, K., A. Kitoh, and J. Srinivasan, 2013: Effect of SST variation on ITCZ in APE simulations. J. Meteor. Soc. Japan, 91A, 195215, https://doi.org/10.2151/jmsj.2013-A06.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schreck, C. J., and J. Molinari, 2011: Tropical cyclogenesis associated with Kelvin waves and the Madden–Julian oscillation. Mon. Wea. Rev., 139, 27232734, https://doi.org/10.1175/MWR-D-10-05060.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sobel, A., S. Wang, and D. Kim, 2014: Moist static energy budget of the MJO during DYNAMO. J. Atmos. Sci., 71, 42764291, https://doi.org/10.1175/JAS-D-14-0052.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Straub, K. H., and G. N. Kiladis, 2002: Observations of a convectively coupled Kelvin wave in the eastern Pacific ITCZ. J. Atmos. Sci., 59, 3053, https://doi.org/10.1175/1520-0469(2002)059<0030:OOACCK>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Talib, J., S. J. Woolnough, N. P. Klingaman, and C. E. Holloway, 2018: The role of the cloud radiative effect in the sensitivity of the intertropical convergence zone to convective mixing. J. Climate, 31, 68216838, https://doi.org/10.1175/JCLI-D-17-0794.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tokioka, T., K. Yamazaki, A. Kitoh, and T. Ose, 1988: The equatorial 30-60 day oscillation and the Arakawa-Schubert penetrative cumulus parameterization. J. Meteor. Soc. Japan, 66, 883901, https://doi.org/10.2151/jmsj1965.66.6_883.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ventrice, M. J., and C. D. Thorncroft, 2013: The role of convectively coupled atmospheric Kelvin waves on African easterly wave activity. Mon. Wea. Rev., 141, 19101924, https://doi.org/10.1175/MWR-D-12-00147.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vitart, F., S. J. Woolnough, M. A. Balmaseda, and A. M. Tompkins, 2007: Monthly forecast of the Madden–Julian oscillation using a coupled GCM. Mon. Wea. Rev., 135, 27002715, https://doi.org/10.1175/MWR3415.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Walters, D. N., and Coauthors, 2011: The Met Office Unified Model Global Atmosphere 3.0/3.1 and JULES Global Land 3.0/3.1 configurations. Geosci. Model Dev., 4, 919941, https://doi.org/10.5194/gmd-4-919-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., 1988: Dynamics of tropical low-frequency waves: An analysis of the moist Kelvin wave. J. Atmos. Sci., 45, 20512065, https://doi.org/10.1175/1520-0469(1988)045<2051:DOTLFW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, L., T. Li, E. D. Maloney, and B. Wang, 2017: Fundamental causes of propagating and nonpropagating MJOs in MJOTF/GASS models. J. Climate, 30, 37433769, https://doi.org/10.1175/JCLI-D-16-0765.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wheeler, M. C., and G. N. Kiladis, 1999: Convectively coupled equatorial waves: Analysis of clouds and temperature in the wavenumber–frequency domain. J. Atmos. Sci., 56, 374399, https://doi.org/10.1175/1520-0469(1999)056<0374:CCEWAO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wheeler, M. C., and H. H. Hendon, 2004: An all-season real-time multivariate MJO index: Development of an index for monitoring and prediction. Mon. Wea. Rev., 132, 19171932, https://doi.org/10.1175/1520-0493(2004)132<1917:AARMMI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, G.-Y., B. J. Hoskins, and J. M. Slingo, 2003: Convectively coupled equatorial waves: A new methodology for identifying wave structures in observational data. J. Atmos. Sci., 60, 16371654, https://doi.org/10.1175/1520-0469(2003)060<1637:CCEWAN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, G.-Y., B. J. Hoskins, and J. M. Slingo, 2007a: Convectively coupled equatorial waves. Part I: Horizontal and vertical structures. J. Atmos. Sci., 64, 34063423, https://doi.org/10.1175/JAS4017.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, G.-Y., B. J. Hoskins, and J. M. Slingo, 2007b: Convectively coupled equatorial waves. Part III: Synthesis structures and their forcing and evolution. J. Atmos. Sci., 64, 34383451, https://doi.org/10.1175/JAS4019.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, C., 2005: Madden-Julian oscillation. Rev. Geophys., 43, RG2003, https://doi.org/10.1029/2004RG000158.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 247 76 8
PDF Downloads 154 37 6