• Alexander, M. J., and D. A. Ortland, 2010: Equatorial waves in High Resolution Dynamics Limb Sounder (HIRDLS) data. J. Geophys. Res., 115, D24111, https://doi.org/10.1029/2010JD014782.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Andrews, D. G., and M. E. McIntyre, 1976: Planetary waves in horizontal and vertical shear: The generalized Eliassen–Palm relation and the mean zonal acceleration. J. Atmos. Sci., 33, 20312048, https://doi.org/10.1175/1520-0469(1976)033<2031:PWIHAV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Andrews, D. G., J. R. Holton, and C. B. Leovy, 1987: Middle Atmosphere Dynamics. Academic Press, 489 pp.

  • Anstey, J. A., and T. G. Shepherd, 2014: High-latitude influence of the quasi-biennial oscillation. Quart. J. Roy. Meteor. Soc., 140, 121, https://doi.org/10.1002/qj.2132.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anstey, J. A., J. F. Scinocca, and M. Keller, 2016: Simulating the QBO in an atmospheric general circulation model: Sensitivity to resolved and parameterized forcing. J. Atmos. Sci., 73, 16491664, https://doi.org/10.1175/JAS-D-15-0099.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baldwin, M. P., and Coauthors, 2001: The quasi-biennial oscillation. Rev. Geophys., 39, 179229, https://doi.org/10.1029/1999RG000073.

  • Beres, J. H., R. R. Garcia, B. A. Boville, and F. Sassi, 2005: Implementation of a gravity wave source spectrum parameterization dependent on the properties of convection in the Whole Atmosphere Community Climate Model (WACCM). J. Geophys. Res., 110, D10108, https://doi.org/10.1029/2004JD005504.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bergman, J. W., and M. L. Salby, 1994: Equatorial wave activity derived from fluctuations in observed convection. J. Atmos. Sci., 51, 37913806, https://doi.org/10.1175/1520-0469(1994)051<3791:EWADFF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Calvo, N., and R. R. Garcia, 2009: Wave forcing of the tropical upwelling in the lower stratosphere under increasing concentrations of greenhouse gases. J. Atmos. Sci., 66, 31843196, https://doi.org/10.1175/2009JAS3085.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • CISL, 2012: Yellowstone: IBM iDataPlex /FDR-IB. Computational and Information Systems Laboratory, http://n2t.net/ark:/85065/d7wd3xhc.

  • Cohen, N. Y., E. P. Gerber, and O. Bühler, 2013: Compensation between resolved and unresolved wave driving in the stratosphere: Implications for downward control. J. Atmos. Sci., 70, 37803798, https://doi.org/10.1175/JAS-D-12-0346.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cohen, N. Y., E. P. Gerber, and O. Bühler, 2014: What drives the Brewer–Dobson circulation? J. Atmos. Sci., 71, 38373855, https://doi.org/10.1175/JAS-D-14-0021.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coy, L., P. A. Newman, S. Pawson, and L. R. Lait, 2017: Dynamics of the disrupted 2015/16 quasi-biennial oscillation. J. Climate, 30, 56615674, https://doi.org/10.1175/JCLI-D-16-0663.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Danabasoglu, G., S. C. Bates, B. P. Briegleb, S. R. Jayne, M. Jochum, W. G. Large, S. Peacock, and S. G. Yeager, 2012: The CCSM4 ocean component. J. Climate, 25, 13611389, https://doi.org/10.1175/JCLI-D-11-00091.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dunkerton, T. J., 1981: On the inertial stability of the equatorial middle atmosphere. J. Atmos. Sci., 38, 23542364, https://doi.org/10.1175/1520-0469(1981)038<2354:OTISFT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dunkerton, T. J., and D. P. Delisi, 1997: Interaction of the quasi-biennial oscillation and the stratopause semiannual oscillation. J. Geophys. Res., 102, 26 10726 116, https://doi.org/10.1029/96JD03678.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ern, M., and P. Preusse, 2009a: Wave fluxes of equatorial Kelvin waves and QBO zonal wind forcing derived from SABER and ECMWF temperature space–time spectra. Atmos. Chem. Phys., 9, 39573986, https://doi.org/10.5194/acp-9-3957-2009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ern, M., and P. Preusse, 2009b: Quantification of the contribution of equatorial Kelvin waves to the QBO wind reversal in the stratosphere. Geophys. Res. Lett., 36, L21801, https://doi.org/10.1029/2009GL040493.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ern, M., and Coauthors, 2014: Interaction of gravity waves with the QBO: A satellite perspective. J. Geophys. Res. Atmos., 119, 23292355, https://doi.org/10.1002/2013JD020731.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garcia, R. R., T. J. Dunkerton, R. S. Lieberman, and R. Vincent, 1997: Climatology of the semiannual oscillation of the tropical middle atmosphere. J. Geophys. Res., 102, 26 01926 032, https://doi.org/10.1029/97JD00207.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Geller, M. A., and Coauthors, 2016: Modeling the QBO—Improvements resulting from higher model vertical resolution. J. Adv. Model. Earth Syst., 8, 10921105, https://doi.org/10.1002/2016MS000699.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Giorgetta, M. A., E. Manzini, and E. Roeckner, 2002: Forcing of the quasi-biennial oscillation from a broad spectrum of atmospheric waves. Geophys. Res. Lett., 29, https://doi.org/10.1029/2002GL014756.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Giorgetta, M. A., E. Manzini, E. Roeckner, M. Esch, and L. Bengston, 2006: Climatology and forcing of the quasi-biennial oscillation in the MAECHAM5 model. J. Climate, 19, 38823901, https://doi.org/10.1175/JCLI3830.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamilton, K., 1984: Mean wind evolution through the quasi-biennial cycle in the tropical lower stratosphere. J. Atmos. Sci., 41, 21132125, https://doi.org/10.1175/1520-0469(1984)041<2113:MWETTQ>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamilton, K., R. J. Wilson, and R. S. Hemler, 2001: Spontaneous stratospheric QBO-like oscillations simulated by the GFDL SKYHI general circulation model. J. Atmos. Sci., 58, 32713292, https://doi.org/10.1175/1520-0469(2001)058<3271:SSQLOS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hayashi, Y., 1971: A generalized model of resolving disturbances into progressive and retrogressive waves by space Fourier and time cross-spectral analyses. J. Meteor. Soc. Japan, 49, 125128, https://doi.org/10.2151/jmsj1965.49.2_125.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hitchman, M. H., and A. S. Huesmann, 2009: Seasonal influence of the quasi-biennial oscillation on stratospheric jets and Rossby wave breaking. J. Atmos. Sci., 66, 935946, https://doi.org/10.1175/2008JAS2631.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holland, M. M., D. A. Bailey, B. P. Briegleb, B. Light, and E. Hunke, 2012: Improved sea ice shortwave radiation physics in CCSM4: The impact of melt ponds and black carbon. J. Climate, 25, 14131430, https://doi.org/10.1175/JCLI-D-11-00078.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holt, L. A., M. J. Alexander, L. Coy, A. Molod, W. Putman, and S. Pawson, 2016: Tropical waves and the quasi-biennial oscillation in a 7-km global climate simulation. J. Atmos. Sci., 73, 37713783, https://doi.org/10.1175/JAS-D-15-0350.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holton, J. R., and R. S. Lindzen, 1972: An updated theory of the quasi-biennial cycle of the tropical stratosphere. J. Atmos. Sci., 29, 10761080, https://doi.org/10.1175/1520-0469(1972)029<1076:AUTFTQ>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holton, J. R., and H.-C. Tan, 1980: The influence of the quasi-biennial oscillation on the global circulation at 50 mb. J. Atmos. Sci., 37, 22002208, https://doi.org/10.1175/1520-0469(1980)037<2200:TIOTEQ>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., 1982: The mathematical theory of frontogenesis. Annu. Rev. Fluid Mech., 14, 131151, https://doi.org/10.1146/annurev.fl.14.010182.001023.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hurrell, J. M., and Coauthors, 2013: The Community Earth System Model: A framework for collaborative research. Bull. Amer. Meteor. Soc., 94, 13391360, https://doi.org/10.1175/BAMS-D-12-00121.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Julian, P., 1975: Comments on the determination of significance levels in the coherence statistic. J. Atmos. Sci., 32, 836837, https://doi.org/10.1175/1520-0469(1975)032<0836:COTDOS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kawatani, Y., K. Sato, T. J. Dunkerton, S. Watanabe, S. Miyahara, and M. Takahashi, 2010: The roles of equatorial trapped waves and internal inertia–gravity waves in driving the quasi-biennial oscillation. Part I: Zonal mean wave forcing. J. Atmos. Sci., 67, 963980, https://doi.org/10.1175/2009JAS3222.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kawatani, Y., J. N. Lee, and K. Hamilton, 2014: Interannual variations of stratospheric water vapor in MLS observations and climate model simulations. J. Atmos. Sci., 71, 40724085, https://doi.org/10.1175/JAS-D-14-0164.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, Y.-H., and H.-Y. Chun, 2015a: Contributions of equatorial wave modes and parameterized gravity waves to the tropical QBO in HadGEM2. J. Geophys. Res. Atmos., 120, 10651090, https://doi.org/10.1002/2014JD022174.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, Y.-H., and H.-Y. Chun, 2015b: Momentum forcing of the quasi-biennial oscillation by equatorial waves in recent reanalyses. Atmos. Chem. Phys., 15, 65776587, https://doi.org/10.5194/acp-15-6577-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kinnison, D. E., and Coauthors, 2007: Sensitivity of chemical tracers to meteorological parameters in the MOZART-3 chemical transport model. J. Geophys. Res., 112, D20302, https://doi.org/10.1029/2006JD007879.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kodera, K., M. Chiba, and K. Shibata, 1991: A general circulation model study of the solar and QBO modulation of the stratospheric circulation during the Northern Hemisphere winter. Geophys. Res. Lett., 18, 12091212, https://doi.org/10.1029/91GL01610.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krismer, T. R., and M. A. Giorgetta, 2014: Wave forcing of the quasi-biennial oscillation in the Max Planck Institute Earth System Model. J. Atmos. Sci., 71, 19852006, https://doi.org/10.1175/JAS-D-13-0310.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lawrence, D. M., and Coauthors, 2011: Parameterization improvements and functional and structural advances in version 4 of the Community Land Model. J. Adv. Model. Earth Syst., 3, M03001, https://doi.org/10.1029/2011MS00045.

    • Search Google Scholar
    • Export Citation
  • Lindzen, R. S., 1981: Turbulence and stress owing to gravity wave and tidal breakdown. J. Geophys. Res., 86, 97079714, https://doi.org/10.1029/JC086iC10p09707.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCormack, J. P., S. D. Eckermann, and T. F. Hogan, 2015: Generation of a quasi-biennial oscillation in a NWP model using a stochastic gravity wave drag parameterization. Mon. Wea. Rev., 143, 21212147, https://doi.org/10.1175/MWR-D-14-0028.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meinshausen, M., and Coauthors, 2011: The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Climatic Change, 109, 213241, https://doi.org/10.1007/s10584-011-0156-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mills, M. J., and Coauthors, 2017: Radiative and chemical response to interactive stratospheric sulfate aerosols in fully coupled CESM1(WACCM). J. Geophys. Res. Atmos., 122, 13 06113 078, https://doi.org/10.1002/2017JD027006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moss, R. H., and Coauthors, 2010: The next generation of scenarios for climate change research and assessment. Nature, 463, 747756, https://doi.org/10.1038/nature08823.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Osprey, S. M., N. Butchart, J. R. Knight, A. A. Scaife, K. Hamilton, J. A. Anstey, V. Schenzinger, and C. Zhang, 2016: An unexpected disruption of the atmospheric quasi-biennial oscillation. Science, 353, 14241427, https://doi.org/10.1126/science.aah4156.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Park, M., and Coauthors, 2017: Variability of stratospheric reactive nitrogen and ozone related to the QBO. J. Geophys. Res. Atmos., 122, 10 10310 118, https://doi.org/10.1002/2017JD027061.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Richter, J. H., F. Sassi, and R. R. Garcia, 2010: Toward a physically based gravity wave source parameterization in a general circulation model. J. Atmos. Sci., 67, 136156, https://doi.org/10.1175/2009JAS3112.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Richter, J. H., A. Solomon, and J. T. Bacmeister, 2014a: Effects of vertical resolution and nonorographic gravity wave drag on the simulated climate in the Community Atmosphere Model, version 5. J. Adv. Model. Earth Syst., 6, 357383, https://doi.org/10.1002/2013MS000303.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Richter, J. H., A. Solomon, and J. T. Bacmeister, 2014b: On the simulation of the quasi-biennial oscillation in the Community Atmosphere Model, version 5. J. Geophys. Res. Atmos., 119, 30453062, https://doi.org/10.1002/2013JD021122.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sander, S. P., and Coauthors, 2006: Chemical kinetics and photochemical data for use in atmospheric studies. Jet Propulsion Laboratory Publ. 06-2, 523 pp., https://jpldataeval.jpl.nasa.gov/pdf/JPL_15_AllInOne.pdf.

  • Shuckburgh, E., W. Norton, A. Iwi, and P. Haynes, 2001: Influence of the quasi-biennial oscillation on isentropic transport and mixing in the tropics and subtropics. J. Geophys. Res., 106, 14 32714 337, https://doi.org/10.1029/2000JD900664.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Strahan, S. E., L. D. Oman, A. R. Douglas, and L. Coy, 2015: Modulation of Antarctic vortex composition by the quasi-biennial oscillation. Geophys. Res. Lett., 42, 42164223, https://doi.org/10.1002/2015GL063759.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., D. Williamson, and F. Zwiers, 2000: The sea surface temperature and sea ice concentration boundary conditions for AMIP II simulations. Program for Climate Model Diagnosis and Intercomparison Rep. 60, Lawrence Livermore National Laboratory, 24 pp., https://pcmdi.llnl.gov/report/ab60.html.

  • Yao, W., and C. Jablonowski, 2015: Idealized quasi-biennial oscillations in an ensemble of dry GCM dynamical cores. J. Atmos. Sci., 72, 22012226, https://doi.org/10.1175/JAS-D-14-0236.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, G. J., and N. A. McFarlane, 1995: Sensitivity of climate simulations to the parameterization of cumulus convection in the Canadian Climate Centre general circulation model. Atmos.–Ocean, 33, 407446, https://doi.org/10.1080/07055900.1995.9649539.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 14 14 14
PDF Downloads 16 16 16

On the Momentum Budget of the Quasi-Biennial Oscillation in the Whole Atmosphere Community Climate Model

View More View Less
  • 1 National Center for Atmospheric Research, Boulder, Colorado
Restricted access

Abstract

This study documents the contribution of equatorial waves and mesoscale gravity waves to the momentum budget of the quasi-biennial oscillation (QBO) in a 110-level version of the Whole Atmosphere Community Climate Model. The model has high vertical resolution, 500 m, above the boundary layer and through the lower and middle stratosphere, decreasing gradually to about 1.5 km near the stratopause. Parameterized mesoscale gravity waves and resolved equatorial waves contribute comparable easterly and westerly accelerations near the equator. Westerly acceleration by resolved waves is due mainly to Kelvin waves of zonal wavenumber in the range k = 1–15 and is broadly distributed about the equator. Easterly acceleration near the equator is due mainly to Rossby–gravity (RG) waves with zonal wavenumbers in the range k = 4–12. These RG waves appear to be generated in situ during both the easterly and westerly phases of the QBO, wherever the meridional curvature of the equatorial westerly jet is large enough to produce reversals of the zonal-mean barotropic vorticity gradient, suggesting that they are excited by the instability of the jet. The RG waves produce a characteristic pattern of Eliassen–Palm flux divergence that includes strong easterly acceleration close to the equator and westerly acceleration farther from the equator, suggesting that the role of the RG waves is to redistribute zonal-mean vorticity such as to neutralize the instability of the westerly jet. Insofar as unstable RG waves might be present in the real atmosphere, mixing due to these waves could have important implications for transport in the tropical stratosphere.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Rolando R. Garcia, rgarcia@ucar.edu

Abstract

This study documents the contribution of equatorial waves and mesoscale gravity waves to the momentum budget of the quasi-biennial oscillation (QBO) in a 110-level version of the Whole Atmosphere Community Climate Model. The model has high vertical resolution, 500 m, above the boundary layer and through the lower and middle stratosphere, decreasing gradually to about 1.5 km near the stratopause. Parameterized mesoscale gravity waves and resolved equatorial waves contribute comparable easterly and westerly accelerations near the equator. Westerly acceleration by resolved waves is due mainly to Kelvin waves of zonal wavenumber in the range k = 1–15 and is broadly distributed about the equator. Easterly acceleration near the equator is due mainly to Rossby–gravity (RG) waves with zonal wavenumbers in the range k = 4–12. These RG waves appear to be generated in situ during both the easterly and westerly phases of the QBO, wherever the meridional curvature of the equatorial westerly jet is large enough to produce reversals of the zonal-mean barotropic vorticity gradient, suggesting that they are excited by the instability of the jet. The RG waves produce a characteristic pattern of Eliassen–Palm flux divergence that includes strong easterly acceleration close to the equator and westerly acceleration farther from the equator, suggesting that the role of the RG waves is to redistribute zonal-mean vorticity such as to neutralize the instability of the westerly jet. Insofar as unstable RG waves might be present in the real atmosphere, mixing due to these waves could have important implications for transport in the tropical stratosphere.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Rolando R. Garcia, rgarcia@ucar.edu
Save