• Bell, M. M., J. Martinez, J. D. Doyle, and R. F. Rogers, 2018: Potential vorticity structure and evolution of Hurricane Patricia (2015). 33rd Conf. on Hurricanes and Tropical Meteorology, Ponte Vedra, FL, Amer. Meteor. Soc., 12B.3, https://ams.confex.com/ams/33HURRICANE/webprogram/Paper340245.html.

  • Bowman, K. P., and M. D. Fowler, 2015: The diurnal cycle of precipitation in tropical cyclones. J. Climate, 28, 53255334, https://doi.org/10.1175/JCLI-D-14-00804.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., 2017: The governing equations for CM1. UCAR Publ. 24 pp., http://www2.mmm.ucar.edu/people/bryan/cm1/cm1_equations.pdf.

  • Bryan, G. H., and R. Rotunno, 2009: The maximum intensity of tropical cyclones in axisymmetric numerical model simulations. Mon. Wea. Rev., 137, 17701789, https://doi.org/10.1175/2008MWR2709.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bu, Y. P., R. G. Fovell, and K. L. Corbosiero, 2014: Influence of cloud-radiative forcing on tropical cyclone structure. J. Atmos. Sci., 71, 16441622, https://doi.org/10.1175/JAS-D-13-0265.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, H., and D.-L. Zhang, 2013: On the rapid intensification of Hurricane Wilma (2005). Part II: Convective bursts and the upper-level warm core. J. Atmos. Sci., 70, 146162, https://doi.org/10.1175/JAS-D-12-062.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, H., and S. G. Gopalakrishnan, 2015: A study of the asymmetric rapid intensification of Hurricane Earl (2010) using the HWRF system. J. Atmos. Sci., 72, 531549, https://doi.org/10.1175/JAS-D-14-0097.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dinh, T. P., D. R. Durran, and T. P. Ackerman, 2010: Maintenance of tropical tropopause layer cirrus. J. Geophys. Res., 115, D02104, https://doi.org/10.1029/2009JD012735.

    • Search Google Scholar
    • Export Citation
  • Doyle, J. D., and Coauthors, 2017: A view of tropical cyclones from above: The Tropical Cyclone Intensity (TCI) Experiment. Bull. Amer. Meteor. Soc., 98, 21132134, https://doi.org/10.1175/BAMS-D-16-0055.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dunion, J. P., C. D. Thorncroft, and C. S. Velden, 2014: The tropical cyclone diurnal cycle of mature hurricanes. Mon. Wea. Rev., 142, 39003919, https://doi.org/10.1175/MWR-D-13-00191.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Duran, P., and J. Molinari, 2016: Upper-tropospheric low Richardson number in tropical cyclones: Sensitivity to cyclone intensity and the diurnal cycle. J. Atmos. Sci., 73, 545554, https://doi.org/10.1175/JAS-D-15-0118.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Duran, P., and J. Molinari, 2018: Dramatic inner-core tropopause variability during the rapid intensification of Hurricane Patricia (2015). Mon. Wea. Rev., 146, 119134, https://doi.org/10.1175/MWR-D-17-0218.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Durran, D. R., T. Dinh, M. Ammerman, and T. Ackerman, 2009: The mesoscale dynamics of thin tropical tropopause cirrus. J. Atmos. Sci., 66, 28592873, https://doi.org/10.1175/2009JAS3046.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K., 2012: Self-stratification of tropical cyclone outflow. Part II: Implications for storm intensification. J. Atmos. Sci., 69, 988996, https://doi.org/10.1175/JAS-D-11-0177.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K., and R. Rotunno, 2011: Self-stratification of tropical cyclone outflow. Part I: Implications for storm structure. J. Atmos. Sci., 68, 22362249, https://doi.org/10.1175/JAS-D-10-05024.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fovell, R. G., Y. P. Bu, K. L. Corbosiero, W.-w. Tung, Y. Cao, H.-C. Kuo, L.-H. Hsu, and H. Su, 2016: Influence of cloud microphysics and radiation on tropical cyclone structure and motion. Multiscale Convection-Coupled Systems in the Tropics: A Tribute to Dr. Michio Yanai, Meteor. Monogr., No. 56, Amer. Meteor. Soc., https://doi.org/10.1175/AMSMONOGRAPHS-D-15-0006.1.

    • Crossref
    • Export Citation
  • Iacono, M. J., J. S. Delamere, E. J. Mlawer, M. W. Shephard, S. A. Clough, and W. D. Collins, 2008: Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res., 113, D13103, https://doi.org/10.1029/2008JD009944.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kepert, J. D., J. Schwendike, and H. Ramsay, 2016: Why is the tropical cyclone boundary layer not “well mixed”? J. Atmos. Sci., 73, 957973, https://doi.org/10.1175/JAS-D-15-0216.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kieu, C., V. Tallapragada, D.-L. Zhang, and Z. Moon, 2016: On the development of double warm-core structures in intense tropical cyclones. J. Atmos. Sci., 73, 44874506, https://doi.org/10.1175/JAS-D-16-0015.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kimberlain, T. B., E. S. Blake, and J. P. Cangialosi, 2016: Tropical cyclone report: Hurricane Patricia. National Hurricane Center Rep. EP202015, 32 pp., https://www.nhc.noaa.gov/data/tcr/EP202015_Patricia.pdf.

  • Komaromi, W. A., and J. D. Doyle, 2017: Tropical cyclone outflow and warm core structure as revealed by HS3 dropsonde data. Mon. Wea. Rev., 145, 13391359, https://doi.org/10.1175/MWR-D-16-0172.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kossin, J., 2002: Daily hurricane variability inferred from GOES infrared imagery. Mon. Wea. Rev., 130, 22602270, https://doi.org/10.1175/1520-0493(2002)130<2260:DHVIFG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leppert, K. D., II, and D. J. Cecil, 2016: Tropical cyclone diurnal cycle as observed by TRMM. Mon. Wea. Rev., 144, 27932808, https://doi.org/10.1175/MWR-D-15-0358.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Markowski, P. M., and G. H. Bryan, 2016: LES of laminar flow in the PBL: A potential problem for convective storm simulations. Mon. Wea. Rev., 144, 18411850, https://doi.org/10.1175/MWR-D-15-0439.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Molinari, J., P. Duran, and D. Vollaro, 2014: Low Richardson number in the tropical cyclone outflow layer. J. Atmos. Sci., 71, 31643179, https://doi.org/10.1175/JAS-D-14-0005.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Navarro, E. L., and G. J. Hakim, 2016: Idealized numerical modeling of the diurnal cycle of tropical cyclones. J. Atmos. Sci., 73, 41894201, https://doi.org/10.1175/JAS-D-15-0349.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ohno, T., and M. Satoh, 2015: On the warm core of a tropical cyclone formed near the tropopause. J. Atmos. Sci., 72, 551571, https://doi.org/10.1175/JAS-D-14-0078.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rogers, R. F., S. Aberson, M. M. Bell, D. J. Cecil, J. D. Doyle, J. Morgerman, L. K. Shay, and C. Velden, 2017: Rewriting the tropical record books: The extraordinary intensification of Hurricane Patricia (2015). Bull. Amer. Meteor. Soc., 98, 20912112, https://doi.org/10.1175/BAMS-D-16-0039.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rotunno, R., and K. A. Emanuel, 1987: An air–sea interaction theory for tropical cyclones. Part II: Evolutionary study using a nonhydrostatic axisymmetric numerical model. J. Atmos. Sci., 44, 542561, https://doi.org/10.1175/1520-0469(1987)044<0542:AAITFT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stern, D. P., and F. Zhang, 2013: How does the eye warm? Part I: A potential temperature budget analysis of an idealized tropical cyclone. J. Atmos. Sci., 70, 7389, https://doi.org/10.1175/JAS-D-11-0329.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, G., R. M. Rasmussen, and K. Manning, 2004: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part I: Description and sensitivity analysis. Mon. Wea. Rev., 132, 519542, https://doi.org/10.1175/1520-0493(2004)132<0519:EFOWPU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trier, S. B., and R. D. Sharman, 2009: Convection-permitting simulations of the environment supporting widespread turbulence within the upper-level outflow of a mesoscale convective system. Mon. Wea. Rev., 137, 19721990, https://doi.org/10.1175/2008MWR2770.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 9 9 9
PDF Downloads 1 1 1

Tropopause Evolution in a Rapidly Intensifying Tropical Cyclone: A Static Stability Budget Analysis in an Idealized Axisymmetric Framework

View More View Less
  • 1 University at Albany, State University of New York, Albany, New York
Restricted access

Abstract

Upper-level static stability (N2) variations can influence the evolution of the transverse circulation and potential vorticity in intensifying tropical cyclones (TCs). This paper examines these variations during the rapid intensification (RI) of a simulated TC. Over the eye, N2 near the tropopause decreases and the cold-point tropopause rises by up to 4 km at the storm center. Outside of the eye, N2 increases considerably just above the cold-point tropopause and the tropopause remains near its initial level. A budget analysis reveals that the advection terms, which include differential advection of potential temperature θ and direct advection of N2, are important throughout the upper troposphere and lower stratosphere. These terms are particularly pronounced within the eye, where they destabilize the layer near and above the cold-point tropopause. Outside of the eye, a radial–vertical circulation develops during RI, with strong outflow below the tropopause and weak inflow above. Differential advection of θ near the outflow jet provides forcing for stabilization below the outflow maximum and destabilization above. Turbulence induced by vertical wind shear on the flanks of the outflow maximum also modifies the vertical stability profile. Meanwhile, radiative cooling tendencies at the top of the cirrus canopy generally act to destabilize the upper troposphere and stabilize the lower stratosphere. The results suggest that turbulence and radiation, alongside differential advection, play fundamental roles in the upper-level N2 evolution of TCs. These N2 tendencies could have implications for both the TC diurnal cycle and the tropopause-layer potential vorticity evolution in TCs.

Current affiliation: Earth System Science Center, University of Alabama in Huntsville, Huntsville, Alabama.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Patrick Duran, patrick.duran@uah.edu

This article is included in the Tropical Cyclone Intensity Experiment (TCI) special collection.

Abstract

Upper-level static stability (N2) variations can influence the evolution of the transverse circulation and potential vorticity in intensifying tropical cyclones (TCs). This paper examines these variations during the rapid intensification (RI) of a simulated TC. Over the eye, N2 near the tropopause decreases and the cold-point tropopause rises by up to 4 km at the storm center. Outside of the eye, N2 increases considerably just above the cold-point tropopause and the tropopause remains near its initial level. A budget analysis reveals that the advection terms, which include differential advection of potential temperature θ and direct advection of N2, are important throughout the upper troposphere and lower stratosphere. These terms are particularly pronounced within the eye, where they destabilize the layer near and above the cold-point tropopause. Outside of the eye, a radial–vertical circulation develops during RI, with strong outflow below the tropopause and weak inflow above. Differential advection of θ near the outflow jet provides forcing for stabilization below the outflow maximum and destabilization above. Turbulence induced by vertical wind shear on the flanks of the outflow maximum also modifies the vertical stability profile. Meanwhile, radiative cooling tendencies at the top of the cirrus canopy generally act to destabilize the upper troposphere and stabilize the lower stratosphere. The results suggest that turbulence and radiation, alongside differential advection, play fundamental roles in the upper-level N2 evolution of TCs. These N2 tendencies could have implications for both the TC diurnal cycle and the tropopause-layer potential vorticity evolution in TCs.

Current affiliation: Earth System Science Center, University of Alabama in Huntsville, Huntsville, Alabama.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Patrick Duran, patrick.duran@uah.edu

This article is included in the Tropical Cyclone Intensity Experiment (TCI) special collection.

Save