• Andrews, D. G., J. R. Holton, and C. B. Leovy, 1987: Middle Atmosphere Dynamics. Academic Press, 489 pp.

  • Bohlinger, P., B.-M. Sinnhuber, R. Ruhnke, and O. Kirner, 2014: Radiative and dynamical contributions to past and future Arctic stratospheric temperature trends. Atmos. Chem. Phys., 14, 16791688, https://doi.org/10.5194/acp-14-1679-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Edmon, H. J., Jr., B. J. Hoskins, and M. E. McIntyre, 1980: Eliassen-Palm cross sections for the troposphere. J. Atmos. Sci., 37, 26002616, https://doi.org/10.1175/1520-0469(1980)037<2600:EPCSFT>2.0.CO;2; Corrigendum, 38, 1115, https://doi.org/10.1175/1520-0469(1981)038<1115:>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eyring, V., T. G. Shepherd, and D. W. Waugh, Eds., 2010: SPARC report on the evaluation of chemistry climate models. Stratospheric Processes and Their Role in Climate Rep. 5, WMO/TD-1526, 426 pp., https://www.sparc-climate.org/publications/sparc-reports/sparc-report-no-5/.

  • Fels, S. B., 1982: A parameterization of scale-dependent radiative damping rates in the middle atmosphere. J. Atmos. Sci., 39, 11411152, https://doi.org/10.1175/1520-0469(1982)039<1141:APOSDR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fueglistaler, S., B. Legras, A. Beljaars, J.-J. Morcrette, A. Simmons, A. M. Tompkins, and S. Uppala, 2009: The diabatic heat budget of the upper troposphere and lower/mid stratosphere in ECMWF reanalyses. Quart. J. Roy. Meteor. Soc., 135, 2137, https://doi.org/10.1002/qj.361.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hartmann, D. L., J. M. Wallace, V. Limpasuvan, D. W. J. Thompson, and J. R. Holton, 2000: Can ozone depletion and global warming interact to produce rapid climate change? Proc. Natl. Acad. Sci. USA, 97, 14121417, https://doi.org/10.1073/pnas.97.4.1412.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haynes, P. H., C. J. Marks, M. E. McIntyre, T. G. Shepherd, and K. P. Shine, 1991: On the “downward control” of extratropical diabatic circulations by eddy-induced mean zonal forces. J. Atmos. Sci., 48, 651678, https://doi.org/10.1175/1520-0469(1991)048<0651:OTCOED>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, Y., and K. K. Tung, 2002: Interannual and decadal variations of planetary wave activity, stratospheric cooling, and Northern Hemisphere annular mode. J. Climate, 15, 16591673, https://doi.org/10.1175/1520-0442(2002)015<1659:IADVOP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ivy, D. J., S. Solomon, and H. E. Rieder, 2016: Radiative and dynamical influences on polar stratospheric temperature trends. J. Climate, 29, 49274938, https://doi.org/10.1175/JCLI-D-15-0503.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, R. Q., C. Jacobi, P. Hoffmann, G. Stober, and E. G. Merzlyakov, 2010: A piecewise linear model for detecting climatic trends and their structural changes with application to mesosphere/lower thermosphere winds over Collm, Germany. J. Geophys. Res., 115, D22105, https://doi.org/10.1029/2010JD014080.

    • Search Google Scholar
    • Export Citation
  • Newman, P. A., and E. R. Nash, 2000: Quantifying the wave driving of the stratosphere. J. Geophys. Res., 105, 12 48512 497, https://doi.org/10.1029/1999JD901191.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Newman, P. A., E. R. Nash, and J. E. Rosenfield, 2001: What controls the temperature of the Arctic stratosphere during the spring? J. Geophys. Res., 106, 19 99920 010, https://doi.org/10.1029/2000JD000061.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Randel, W. J., and F. Wu, 2007: A stratospheric ozone profile data set for 1979–2005: Variability, trends, and comparisons with column ozone data. J. Geophys. Res., 112, D06313, https://doi.org/10.1029/2006JD007339.

    • Search Google Scholar
    • Export Citation
  • Rosenlof, K. H., 1995: Seasonal cycle of the residual mean meridional circulation in the stratosphere. J. Geophys. Res., 100, 51735191, https://doi.org/10.1029/94JD03122.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Santer, B. D., T. M. L. Wigley, J. S. Boyle, D. J. Gaffen, J. J. Hnilo, D. Nychka, D. E. Parker, and K. E. Taylor, 2000: Statistical significance of trends and trend differences in layer-average atmospheric temperature time series. J. Geophys. Res., 105, 73377356, https://doi.org/10.1029/1999JD901105.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., J. M. Wallace, and G. C. Hegerl, 2000: Annular modes in the extratropical circulation. Part II: Trends. J. Climate, 13, 10181036, https://doi.org/10.1175/1520-0442(2000)013<1018:AMITEC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., and Coauthors, 2012: The mystery of recent stratospheric temperature trends. Nature, 491, 692697, https://doi.org/10.1038/nature11579.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2 2 2
PDF Downloads 2 2 2

Verification of an Approximate Thermodynamic Equation with Application to Study on Arctic Stratospheric Temperature Changes

View More View Less
  • 1 Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Key Laboratory of Meteorological Disaster, Ministry of Education, and International Joint Research Laboratory on Climate and Environment Change, and School of Atmospheric Sciences, Nanjing University of Information Science and Technology, Nanjing, China
  • | 2 School of Atmospheric Sciences, Nanjing University of Information Science and Technology, Nanjing, China
Restricted access

Abstract

Temperature changes in the Arctic lower stratosphere on both short- and long-term time scales are critical for changing the magnitude of ozone losses in the Arctic vortex. In this paper, an approximate month-to-month temperature change equation is constructed and extended to a new form for decade-to-decade changes. Then we provide a verification of these equations and show an example of an application for partitioning between the dynamical and radiative contributions to the Arctic lower-stratospheric temperature decadal changes, as well as the trends, using the European Centre for Medium-Range Weather Forecasts (ECMWF) interim reanalysis (ERA-Interim) data during the period of 1980–99. At 100 hPa, the month-to-month Arctic temperature increment is a small term compared to the dynamical heating and diabatic heating, which are largely canceling terms with maximum magnitudes in November–April and October–March, respectively. However, it is not the case for their decadal changes and the decadal change of the Arctic current-month temperature compared to those of the regressed dynamical heating and radiative heating, where the current-month decadal changes and the corresponding trends are approached except in March and a rough agreement exists between these trends and those reported in other studies. The dynamical plus diabatic heating term and the temperature increment, as well as their decadal changes, are roughly balanced during the annual oscillation. However, some departures exist in both cases because of the large deviations or uncertainties of relevant terms and also probably due to the quasigeostrophic approximation and the eddy heat flux approximation of the dynamical heating, and a restricted condition of the eddy heat flux approximation is given at the end.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Prof. Renqiang Liu, rq_liu@nuist.edu.cn

Abstract

Temperature changes in the Arctic lower stratosphere on both short- and long-term time scales are critical for changing the magnitude of ozone losses in the Arctic vortex. In this paper, an approximate month-to-month temperature change equation is constructed and extended to a new form for decade-to-decade changes. Then we provide a verification of these equations and show an example of an application for partitioning between the dynamical and radiative contributions to the Arctic lower-stratospheric temperature decadal changes, as well as the trends, using the European Centre for Medium-Range Weather Forecasts (ECMWF) interim reanalysis (ERA-Interim) data during the period of 1980–99. At 100 hPa, the month-to-month Arctic temperature increment is a small term compared to the dynamical heating and diabatic heating, which are largely canceling terms with maximum magnitudes in November–April and October–March, respectively. However, it is not the case for their decadal changes and the decadal change of the Arctic current-month temperature compared to those of the regressed dynamical heating and radiative heating, where the current-month decadal changes and the corresponding trends are approached except in March and a rough agreement exists between these trends and those reported in other studies. The dynamical plus diabatic heating term and the temperature increment, as well as their decadal changes, are roughly balanced during the annual oscillation. However, some departures exist in both cases because of the large deviations or uncertainties of relevant terms and also probably due to the quasigeostrophic approximation and the eddy heat flux approximation of the dynamical heating, and a restricted condition of the eddy heat flux approximation is given at the end.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Prof. Renqiang Liu, rq_liu@nuist.edu.cn
Save