• Bahreini, R., J. L. Jimenez, J. Wang, R. C. Flagan, J. H. Seinfeld, J. T. Jayne, and D. R. Worsnop, 2003: Aircraft-based aerosol size and composition measurements during ACE-Asia using an Aerodyne aerosol mass spectrometer. J. Geophys. Res., 108, 8645, https://doi.org/10.1029/2002JD003226.

    • Search Google Scholar
    • Export Citation
  • Bahreini, R., and Coauthors, 2008: Design and operation of a pressure-controlled inlet for airborne sampling with an aerodynamic aerosol lens. Aerosol Sci. Technol., 42, 465471, https://doi.org/10.1080/02786820802178514.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bahreini, R., and Coauthors, 2009: Organic aerosol formation in urban and industrial plumes near Houston and Dallas, Texas. J. Geophys. Res., 114, D00F16, https://doi.org/10.1029/2008JD011493.

    • Search Google Scholar
    • Export Citation
  • Canagaratna, M. R., and Coauthors, 2007: Chemical and microphysical characterization of ambient aerosols with the Aerodyne aerosol mass spectrometer. Mass Spectrom. Rev., 26, 185222, https://doi.org/10.1002/mas.20115.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cao, G., X. Zhang, S. Gong, X. An, and Y. Wang, 2011: Emission inventories of primary particles and pollutant gases for China. Chin. Sci. Bull., 56, 781788, https://doi.org/10.1007/s11434-011-4373-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, P., J. Quan, Q. Zhang, X. Tie, Y. Gao, X. Li, and M. Huang, 2013: Measurements of vertical and horizontal distributions of ozone over Beijing from 2007 to 2010. Atmos. Environ., 74, 3744, https://doi.org/10.1016/j.atmosenv.2013.03.026.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeCarlo, P. F., and Coauthors, 2006: Field-deployable, high-resolution, time-of-flight aerosol mass spectrometer. Anal. Chem., 78, 82818289, https://doi.org/10.1021/ac061249n.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeCarlo, P. F., and Coauthors, 2008: Fast airborne aerosol size and chemistry measurements above Mexico City and central Mexico during the MILAGRO campaign. Atmos. Chem. Phys., 8, 40274048, https://doi.org/10.5194/acp-8-4027-2008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dockery, D. W., 2001: Epidemiologic evidence of cardiovascular effects of particulate air pollution. Environ. Health Perspect., 109, 483486, https://doi.org/10.1289/ehp.01109s4483.

    • Search Google Scholar
    • Export Citation
  • Drewnick, F., and Coauthors, 2005: A new time-of-flight aerosol mass spectrometer (TOF-AMS)—Instrument description and first field deployment. Aerosol Sci. Technol., 39, 637658, https://doi.org/10.1080/02786820500182040.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Duan, F., X. Liu, T. Yu, and H. Cachier, 2004: Identification and estimate of biomass burning contribution to the urban aerosol organic carbon concentrations in Beijing. Atmos. Environ., 38, 12751282, https://doi.org/10.1016/j.atmosenv.2003.11.037.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dunlea, E. J., and Coauthors, 2009: Evolution of Asian aerosols during transpacific transport in INTEX-B. Atmos. Chem. Phys., 9, 72577287, https://doi.org/10.5194/acp-9-7257-2009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fenger, J., 1999: Urban air quality. Atmos. Environ., 33, 48774900, https://doi.org/10.1016/S1352-2310(99)00290-3.

  • Fröhlich, R., and Coauthors, 2015: Fourteen months of on-line measurements of the non-refractory submicron aerosol at the Jungfraujoch (3580 m a.s.l.)—Chemical composition, origins and organic aerosol sources. Atmos. Chem. Phys., 15, 11 37311 398, https://doi.org/10.5194/acp-15-11373-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guo, H., and Coauthors, 2016: Fine particle pH and the partitioning of nitric acid during winter in the northeastern United States. J. Geophys. Res. Atmos., 121, 10 35510 376, https://doi.org/10.1002/2016JD025311.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guo, H., and Coauthors, 2017: Fine particle pH and gas–particle phase partitioning of inorganic species in Pasadena, California, during the 2010 CalNex campaign. Atmos. Chem. Phys., 17, 57035719, https://doi.org/10.5194/acp-17-5703-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heald, C. L., and Coauthors, 2011: Exploring the vertical profile of atmospheric organic aerosol: Comparing 17 aircraft field campaigns with a global model. Atmos. Chem. Phys., 11, 12 67312 696, https://doi.org/10.5194/acp-11-12673-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hennigan, C. J., and Coauthors, 2008: On the volatility and production mechanisms of newly formed nitrate and water soluble organic aerosol in Mexico City. Atmos. Chem. Phys., 8, 37613768, https://doi.org/10.5194/acp-8-3761-2008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hermann, M., F. Stratmann, M. Wilck, and A. Wiedensohler, 2001: Sampling characteristics of an aircraft-borne aerosol inlet system. J. Atmos. Oceanic Technol., 18, 719, https://doi.org/10.1175/1520-0426(2001)018<0007:SCOAAB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, W., and Coauthors, 2016: Chemical composition, sources, and aging process of submicron aerosols in Beijing: Contrast between summer and winter. J. Geophys. Res. Atmos., 121, 19551977, https://doi.org/10.1002/2015JD024020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, W., M. Hu, W.-W. Hu, J. Zheng, C. Chen, Y. Wu, and S. Guo, 2017: Seasonal variations in high time-resolved chemical compositions, sources, and evolution of atmospheric submicron aerosols in the megacity Beijing. Atmos. Chem. Phys., 17, 997910 000, https://doi.org/10.5194/acp-17-9979-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, X.-F., and Coauthors, 2010: Highly time-resolved chemical characterization of atmospheric submicron particles during 2008 Beijing Olympic Games using an Aerodyne high-resolution aerosol mass spectrometer. Atmos. Chem. Phys., 10, 89338945, https://doi.org/10.5194/acp-10-8933-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • IPCC, 2007: Climate Change 2007: The Physical Science Basis. Cambridge University Press, 996 pp.

  • Jimenez, J. L., and Coauthors, 2003: Ambient aerosol sampling using the Aerodyne aerosol mass spectrometer. J. Geophys. Res., 108, 8425, https://doi.org/10.1029/2001JD001213.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kline, J., B. Huebert, S. Howell, B. Blomquist, J. Zhuang, T. Bertram, and J. Carrillo, 2004: Aerosol composition and size versus altitude measured from the C-130 during ACE-Asia. J. Geophys. Res., 109, D19S08, https://doi.org/10.1029/2004JD004540.

    • Search Google Scholar
    • Export Citation
  • Lanz, V. A., M. R. Alfarra, U. Baltensperger, B. Buchmann, C. Hueglin, and A. S. H. Prevot, 2007: Source apportionment of submicron organic aerosols at an urban site by factor analytical modelling of aerosol mass spectra. Atmos. Chem. Phys., 7, 15031522, https://doi.org/10.5194/acp-7-1503-2007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Launiainen, J., 1995: Derivation of the relationship between the Obukhov stability parameters and bulk Richardson number for flux-profile studies. Bound.-Layer Meteor., 76, 165179, https://doi.org/10.1007/BF00710895.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lawrence, M. G., T. M. Butler, J. Steinkamp, B. R. Gurjar, and J. Lelieveld, 2007: Regional pollution potentials of megacities and other major population centers. Atmos. Chem. Phys., 7, 39693987, https://doi.org/10.5194/acp-7-3969-2007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Q., Y. Sun, B. Hu, Z. R. Liu, S. Akio, and Y. S. Wang, 2012: In situ measurement of PM1 organic aerosol in Beijing winter using a high-resolution aerosol mass spectrometer. Chin. Sci. Bull., 57, 819826, https://doi.org/10.1007/s11434-011-4886-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Q., and Coauthors, 2018: New positive feedback mechanism between boundary layer meteorology and secondary aerosol formation during severe haze events. Sci. Rep., 8, 6095, https://doi.org/10.1038/s41598-018-24366-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, X., and Coauthors, 2017: Airborne measurements of western U.S. wildfire emissions: Comparison with prescribed burning and air quality implications. J. Geophys. Res. Atmos., 122, 61086129, https://doi.org/10.1002/2016JD026315.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Madronich, S., 2006: Chemical evolution of gaseous air pollutants down-wind of tropical megacities: Mexico City case study. Atmos. Environ., 40, 60126018, https://doi.org/10.1016/j.atmosenv.2005.08.047.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matthew, B. M., A. M. Middlebrook, and T. B. Onasch, 2008: Collection efficiencies in an Aerodyne aerosol mass spectrometer as a function of particle phase for laboratory generated aerosols. Aerosol Sci. Technol., 42, 884898, https://doi.org/10.1080/02786820802356797.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Middlebrook, A. M., R. Bahreini, J. L. Jimenez, and M. R. Canagaratna, 2012: Evaluation of composition-dependent collection efficiencies for the Aerodyne aerosol mass spectrometer using field data. Aerosol Sci. Technol., 46, 258271, https://doi.org/10.1080/02786826.2011.620041.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morgan, W. T., J. D. Allan, K. N. Bower, G. Capes, J. Crosier, P. I. Williams, and H. Coe, 2009: Vertical distribution of sub-micron aerosol chemical composition from north-western Europe and the north-east Atlantic. Atmos. Chem. Phys., 9, 53895401, https://doi.org/10.5194/acp-9-5389-2009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Noone, K. J., and Coauthors, 2000: A case study of ship track formation in a polluted marine boundary layer. J. Atmos. Sci., 57, 27482764, https://doi.org/10.1175/1520-0469(2000)057<2748:ACSOST>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Osborne, S. R., and J. M. Haywood, 2005: Aircraft observations of the microphysical and optical properties of major aerosol species. Atmos. Res., 73, 173201, https://doi.org/10.1016/j.atmosres.2004.09.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Paatero, P., and U. Tapper, 1994: Positive matrix factorization: A non-negative factor model with optimal utilization of error estimates of data values. Environmetrics, 5, 111126, https://doi.org/10.1002/env.3170050203.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pathak, R. K., X. H. Yao, and C. K. Chan, 2004: Sampling artifacts of acidity and ionic species in PM2.5. Environ. Sci. Technol., 38, 254259, https://doi.org/10.1021/es0342244.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pathak, R. K., W. S. Wu, and T. Wang, 2009: Summertime PM2.5 ionic species in four major cities of China: Nitrite formation in an ammonia-deficient atmosphere. Atmos. Chem. Phys., 9, 17111722, https://doi.org/10.5194/acp-9-1711-2009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pope, C. A., III, and D. W. Dockery, 2006: Health effects of fine particulate air pollution: Lines that connect. J. Air Waste Manage. Assoc., 56, 709742, https://doi.org/10.1080/10473289.2006.10464485.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Preunkert, S., D. Wagenbach, and M. Legrand, 2002: Improvement and characterization of an automatic aerosol sampler for remote (glacier) sites. Atmos. Environ., 36, 12211232, https://doi.org/10.1016/S1352-2310(01)00371-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Quan, J., and Coauthors, 2013: Evolution of planetary boundary layer under different weather conditions, and its impact on aerosol concentrations. Particuology, 11, 3440, https://doi.org/10.1016/j.partic.2012.04.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Quan, J., X. X. Tie, Q. Zhang, Q. Liu, X. Li, Y. Gao, and D. Zhao, 2014: Characteristics of heavy aerosol pollution during the 2012–2013 winter in Beijing, China. Atmos. Environ., 88, 8389, https://doi.org/10.1016/j.atmosenv.2014.01.058.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Quan, J., Q. Liu, X. Li, Y. Gao, X. Jia, J. Sheng, and Y. Liu, 2015: Effect of heterogeneous aqueous reactions on the secondary formation of inorganic aerosols during haze events. Atmos. Environ., 122, 306312, https://doi.org/10.1016/j.atmosenv.2015.09.068.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Quan, J., and Coauthors, 2017: Anthropogenic pollution elevates the peak height of new particle formation from planetary boundary layer to lower free troposphere. Geophys. Res. Lett., 44, 75377543, https://doi.org/10.1002/2017GL074553.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schneider, J., and Coauthors, 2006: Aircraft-based operation of an aerosol mass spectrometer: Measurements of tropospheric aerosol composition. J. Aerosol Sci., 37, 839857, https://doi.org/10.1016/j.jaerosci.2005.07.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schroder, J. C., and Coauthors, 2018: Sources and secondary production of organic aerosols in the northeastern United States during WINTER. J. Geophys. Res. Atmos., 123, 77717796, https://doi.org/10.1029/2018JD028475.

    • Search Google Scholar
    • Export Citation
  • Schwartz, J., F. Laden, and A. Zanobetti, 2002: The concentration-response relation between PM2.5 and daily deaths. Environ. Health Perspect., 110, 10251029, https://doi.org/10.1289/ehp.021101025.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sharan, M., R. Krishna, and T. V. Aditi, 2003: On the bulk Richardson number and flux profile relations in an atmospheric surface layer under weak wind stable conditions. Atmos. Environ., 37, 36813691, https://doi.org/10.1016/S1352-2310(03)00409-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shrestha, A. B., C. P. Wake, and J. E. Dibb, 1997: Chemical composition of aerosol and snow in the high Himalaya during the summer monsoon season. Atmos. Environ., 31, 28152826, https://doi.org/10.1016/S1352-2310(97)00047-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, J., and Coauthors, 2010: Highly time- and size-resolved characterization of submicron aerosol particles in Beijing using an Aerodyne aerosol mass spectrometer. Atmos. Environ., 44, 131140, https://doi.org/10.1016/j.atmosenv.2009.03.020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, Y., and Coauthors, 2009: Size-resolved aerosol chemistry on Whistler Mountain, Canada with a high-resolution aerosol mass spectrometer during INTEX-B. Atmos. Chem. Phys., 9, 30953111, https://doi.org/10.5194/acp-9-3095-2009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, Y., and Coauthors, 2013: Aerosol composition, sources and processes during wintertime in Beijing, China. Atmos. Chem. Phys., 13, 45774592, https://doi.org/10.5194/acp-13-4577-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tian, P. F., and Coauthors, 2018: Enhanced bottom-of-the-atmosphere cooling and atmosphere heating efficiency by mixed-type aerosols: A classification based on aerosol nonsphericity. J. Atmos. Sci., 75, 113124, https://doi.org/10.1175/JAS-D-17-0019.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Twomey, S., 1977: The influence of pollution on the shortwave albedo of clouds. J. Atmos. Sci., 34, 11491152, https://doi.org/10.1175/1520-0469(1977)034<1149:TIOPOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ulbrich, I. M., M. R. Canagaratna, Q. Zhang, D. R. Worsnop, and J. L. Jimenez, 2009: Interpretation of organic components from positive matrix factorization of aerosol mass spectrometric data. Atmos. Chem. Phys., 9, 28912918, https://doi.org/10.5194/acp-9-2891-2009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilczak, J. M., E. E. Gossard, W. D. Neff, and W. L. Eberhard, 1996: Ground-based remote sensing of the atmospheric boundary layer: 25 years of progress. Bound.-Layer Meteor., 78, 321349, https://doi.org/10.1007/BF00120940.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xin, J., and Coauthors, 2010: Variability and reduction of atmospheric pollutants in Beijing and its surrounding area during the Beijing 2008 Olympic Games. Chin. Sci. Bull., 55, 19371944, https://doi.org/10.1007/s11434-010-3216-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xin, J., Q. Zhang, L. Wang, C. S. Gong, Y. Wang, Z. Liu, and W. Gao, 2014: The empirical relationship between the PM2.5 concentration and aerosol optical depth over the background of North China from 2009 to 2011. Atmos. Res., 138, 179188, https://doi.org/10.1016/j.atmosres.2013.11.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, P., J. Zhang, D. Ji, Z. Liu, G. Tang, C. Jiang, and Y. Wang, 2018: Characterization of submicron particles during autumn in Beijing, China. J. Environ. Sci., 63, 1627, https://doi.org/10.1016/j.jes.2017.03.036.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Q., M. R. Canagaratna, J. T. Jayne, D. R. Worsnop, and J.-L. Jimenez, 2005: Time- and size-resolved chemical composition of submicron particles in Pittsburgh: Implications for aerosol sources and processes. J. Geophys. Res., 110, D07S09, https://doi.org/10.1029/2004JD004649.

    • Search Google Scholar
    • Export Citation
  • Zhang, Q., J. Jimenez, M. Canagaratna, I. Ulbrich, N. Ng, D. Worsnop, and Y. Sun, 2011: Understanding atmospheric organic aerosols via factor analysis of aerosol mass spectrometry: A review. Anal. Bioanal. Chem., 401, 30453067, https://doi.org/10.1007/s00216-011-5355-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Q., X. Ma, X. Tie, M. Huang, and C. Zhao, 2009: Vertical distributions of aerosols under different weather conditions: Analysis of in-situ aircraft measurements in Beijing, China. Atmos. Environ., 43, 55265535, https://doi.org/10.1016/j.atmosenv.2009.05.037.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Q., J. N. Quan, X. Tie, X. Li, Q. Liu, Y. Gao, and D. Zhao, 2015: Effects of meteorology and secondary particle formation on visibility during heavy haze events in Beijing, China. Sci. Total Environ., 502, 578584, https://doi.org/10.1016/j.scitotenv.2014.09.079.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Y., Y. Wang, X. Zhang, X. Shen, J. Sun, L. Wu, Z. Zhang, and H. Che, 2018: Chemical components, variation, and source identification of PM1 during the heavy air pollution episodes in Beijing in December 2016. J. Meteor. Res., 32, 113, https://doi.org/10.1007/s13351-018-7051-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, B., P. Wang, J. Z. Ma, S. Zhu, A. Pozzer, and W. Li, 2012: A high-resolution emission inventory of primary pollutants for the Huabei region, China. Atmos. Chem. Phys., 12, 481501, https://doi.org/10.5194/acp-12-481-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 9 9 9
PDF Downloads 9 9 9

Vertical Profiles of Aerosol Composition over Beijing, China: Analysis of In Situ Aircraft Measurements

View More View Less
  • 1 Institute of Urban Meteorology, China Meteorological Administration, and Beijing Weather Modification Office, and Beijing Key Laboratory of Cloud, Precipitation, and Atmospheric Water Resources, Beijing, China
  • | 2 Institute of Urban Meteorology, China Meteorological Administration, Beijing, China
  • | 3 Beijing Weather Modification Office, and Beijing Key Laboratory of Cloud, Precipitation, and Atmospheric Water Resources, Beijing, China
  • | 4 Weather Modification Center, Chinese Academy of Meteorological Sciences, Beijing, China
  • | 5 Brookhaven National Laboratory, Upton, New York
Restricted access

Abstract

Aerosol samples were collected over Beijing, China, during several flights in November 2011. Aerosol composition of nonrefractory submicron particles (NR-PM1) was measured by an Aerodyne compact time-of-flight aerosol mass spectrometer (C-ToF-AMS). This measurement on the aircraft provided vertical distribution of aerosol species over Beijing, including sulfate (SO4), nitrate (NO3), ammonium (NH4), chloride (Chl), and organic aerosols [OA; hydrocarbon-like OA (HOA) and oxygenated OA (OOA)]. The observations showed that aerosol compositions varied drastically with altitude, especially near the top of the planetary boundary layer (PBL). On average, organics (34%) and nitrate (32%) were dominant components in the PBL, followed by ammonium (15%), sulfate (14%), and chloride (4%); in the free troposphere (FT), sulfate (34%) and organics (28%) were dominant components, followed by ammonium (20%), nitrate (19%), and chloride (1%). The dominant OA species was primarily HOA in the PBL but changed to OOA in the FT. For sulfate, nitrate, and ammonium, the sulfate mass fraction increased from the PBL to the FT, nitrate mass fraction decreased, and ammonium remained relatively constant. Analysis of the sulfate-to-nitrate molar ratio further indicated that this ratio was usually less than one in the FT but larger than one in the PBL. Further analysis revealed that the vertical aerosol composition profiles were influenced by complex processes, including PBL structure, regional transportation, emission variation, and the aging process of aerosols and gaseous precursors during vertical diffusion.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Jiannong Quan, jnquan@ium.cn

Abstract

Aerosol samples were collected over Beijing, China, during several flights in November 2011. Aerosol composition of nonrefractory submicron particles (NR-PM1) was measured by an Aerodyne compact time-of-flight aerosol mass spectrometer (C-ToF-AMS). This measurement on the aircraft provided vertical distribution of aerosol species over Beijing, including sulfate (SO4), nitrate (NO3), ammonium (NH4), chloride (Chl), and organic aerosols [OA; hydrocarbon-like OA (HOA) and oxygenated OA (OOA)]. The observations showed that aerosol compositions varied drastically with altitude, especially near the top of the planetary boundary layer (PBL). On average, organics (34%) and nitrate (32%) were dominant components in the PBL, followed by ammonium (15%), sulfate (14%), and chloride (4%); in the free troposphere (FT), sulfate (34%) and organics (28%) were dominant components, followed by ammonium (20%), nitrate (19%), and chloride (1%). The dominant OA species was primarily HOA in the PBL but changed to OOA in the FT. For sulfate, nitrate, and ammonium, the sulfate mass fraction increased from the PBL to the FT, nitrate mass fraction decreased, and ammonium remained relatively constant. Analysis of the sulfate-to-nitrate molar ratio further indicated that this ratio was usually less than one in the FT but larger than one in the PBL. Further analysis revealed that the vertical aerosol composition profiles were influenced by complex processes, including PBL structure, regional transportation, emission variation, and the aging process of aerosols and gaseous precursors during vertical diffusion.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Jiannong Quan, jnquan@ium.cn
Save