• Bell, M. M., and M. T. Montgomery, 2008: Observed structure, evolution, and potential intensity of category five Hurricane Isabel (2003) from 12 to 14 September. Mon. Wea. Rev., 136, 20232046, https://doi.org/10.1175/2007MWR1858.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bell, M. M., M. T. Montgomery, and K. A. Emanuel, 2012: Air–sea enthalpy and momentum exchange at major hurricane wind speeds observed during CBLAST. J. Atmos. Sci., 69, 31973222, https://doi.org/10.1175/JAS-D-11-0276.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bister, M., and K. A. Emanuel, 2002: Low frequency variability of tropical cyclone potential intensity 1. Interannual to interdecadal variability. J. Geophys. Res., 107, 4801, https://doi.org/10.1029/2001JD000776.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bu, Y. P., R. G. Fovell, and K. L. Corbosiero, 2014: Influence of cloud–radiative forcing on tropical cyclone structure. J. Atmos. Sci., 71, 16441662, https://doi.org/10.1175/JAS-D-13-0265.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Camp, J. P., and M. T. Montgomery, 2001: Hurricane maximum intensity: Past and present. Mon. Wea. Rev., 129, 17041717, https://doi.org/10.1175/1520-0493(2001)129<1704:HMIPAP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Craig, G., 1996: Numerical experiments on radiation and tropical cyclones. Quart. J. Roy. Meteor. Soc., 122, 415422, https://doi.org/10.1002/qj.49712253006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dudhia, J., 1989: Numerical study of convection observed during the Winter Monsoon Experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46, 30773107, https://doi.org/10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dunion, J. P., C. D. Thorncroft, and C. S. Velden, 2014: The tropical cyclone diurnal cycle of mature hurricanes. Mon. Wea. Rev., 142, 39003919, https://doi.org/10.1175/MWR-D-13-00191.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eliassen, A., 1952: Slow thermally or frictionally controlled meridional circulations in a circular vortex. Astrophys. Nor., 5, 1960.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1986: An air–sea interaction theory for tropical cyclones. Part I: Steady-state maintenance. J. Atmos. Sci., 43, 585604, https://doi.org/10.1175/1520-0469(1986)043<0585:AASITF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1988: The maximum intensity of hurricanes. J. Atmos. Sci., 45, 11431155, https://doi.org/10.1175/1520-0469(1988)045<1143:TMIOH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1989: The finite-amplitude nature of tropical cyclogenesis. J. Atmos. Sci., 46, 34313456, https://doi.org/10.1175/1520-0469(1989)046<3431:TFANOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1991: The theory of hurricanes. Annu. Rev. Fluid Mech., 23, 179196, https://doi.org/10.1146/annurev.fl.23.010191.001143.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 2012: Self-stratification of tropical cyclone outflow. Part II: Implications for storm intensifications. J. Atmos. Sci., 69, 988996, https://doi.org/10.1175/JAS-D-11-0177.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., S. Solomon, D. Folini, S. Davis, and C. Cagnazzo, 2013: Influence of tropical tropopause layer cooling on Atlantic hurricane activity. J. Climate, 26, 22882301, https://doi.org/10.1175/JCLI-D-12-00242.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fovell, R. G., K. L. Corbosiero, and H.-C. Kuo, 2009: Cloud microphysics impact on hurricane track revealed in idealized experiments. J. Atmos. Sci., 66, 17641778, https://doi.org/10.1175/2008JAS2874.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fovell, R. G., K. L. Bu, Y. P. Corbosiero, W. Tung, Y. Cao, H. Kuo, L. Hsu, and H. Su, 2016: Influence of cloud microphysics and radiation on tropical cyclone structure and motion. Multiscale Convection-Coupled Systems in the Tropics: A Tribute to Dr. Michio Yanai, Meteor. Monogr., No. 56, Amer. Meteor. Soc., https://doi.org/10.1175/AMSMONOGRAPHS-D-15-0006.1.

    • Crossref
    • Export Citation
  • Gettelman, A., and P. F. Forster, 2002: A climatology of the tropical tropopause layer. J. Meteor. Soc. Japan, 80, 911924, https://doi.org/10.2151/jmsj.80.911.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Godbole, R. V., 1973: On destabilization of clouds by radiative cooling. Mon. Wea. Rev., 101, 496500, https://doi.org/10.1175/1520-0493(1973)101<0496:ODOCBR>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gray, W. M., and R. W. Jacobson Jr., 1977: Diurnal variation of deep cumulus convection. Mon. Wea. Rev., 105, 11711188, https://doi.org/10.1175/1520-0493(1977)105<1171:DVODCC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hakim, G. J., 2011: The mean state of axisymmetric hurricanes in statistical equilibrium. J. Atmos. Sci., 68, 13641376, https://doi.org/10.1175/2010JAS3644.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hirschberg, P. A., and J. M. Fritsch, 1993: On understanding height tendency. Mon. Wea. Rev., 121, 26462661, https://doi.org/10.1175/1520-0493(1993)121<2646:OUHT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holland, G. J., 1997: The maximum potential intensity of tropical cyclones. J. Atmos. Sci., 54, 25192541, https://doi.org/10.1175/1520-0469(1997)054<2519:TMPIOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 23182341, https://doi.org/10.1175/MWR3199.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Melhauser, C., and F. Zhang, 2014: Diurnal radiation cycle impact on the pregenesis environment of Hurricane Karl (2010). J. Atmos. Sci., 71, 12411259, https://doi.org/10.1175/JAS-D-13-0116.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102, 16 66316 682, https://doi.org/10.1029/97JD00237.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Navarro, E. L., and G. J. Hakim, 2016: Idealized numerical modeling of the diurnal cycle of tropical cyclones. J. Atmos. Sci., 73, 41894201, https://doi.org/10.1175/JAS-D-15-0349.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Navarro, E. L., G. J. Hakim, and H. E. Willoughby, 2017: Balanced response of an axisymmetric tropical cyclone to periodic diurnal heating. J. Atmos. Sci., 74, 33253337, https://doi.org/10.1175/JAS-D-16-0279.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nicholls, M. E., 2015: An investigation of how radiation may cause accelerated rates of tropical cyclogenesis and diurnal cycles of convective activity. Atmos. Chem. Phys., 15, 90039029, https://doi.org/10.5194/acp-15-9003-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nolan, D. S., 2007: What is the trigger for tropical cyclogenesis? Aust. Meteor. Mag., 56, 241266.

  • Ohno, T., M. Satoh, and Y. Yamada, 2016: Warm cores, eyewall slopes, and intensities of tropical cyclones simulated by a 7-km-mesh global nonhydrostatic model. J. Atmos. Sci., 73, 42894309, https://doi.org/10.1175/JAS-D-15-0318.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pauluis, O., 2007: Sources and sinks of available potential energy in a moist atmosphere. J. Atmos. Sci., 64, 26272641, https://doi.org/10.1175/JAS3937.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ramsay, H. A., 2013: The effects of imposed stratospheric cooling on the maximum intensity of tropical cyclones in axisymmetric radiative–convective equilibrium. J. Climate, 26, 99779985, https://doi.org/10.1175/JCLI-D-13-00195.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Riemer, M., and F. Laliberté, 2015: Secondary circulation of tropical cyclones in vertical wind shear: Lagrangian diagnostic and pathways of environmental interaction. J. Atmos. Sci., 72, 35173536, https://doi.org/10.1175/JAS-D-14-0350.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rotunno, R., and K. A. Emanuel, 1987: An air–sea interaction theory for tropical cyclones. Part II: Evolutionary study using a nonhydrostatic axisymmetric numerical model. J. Atmos. Sci., 44, 542561, https://doi.org/10.1175/1520-0469(1987)044<0542:AAITFT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saha, S., and Coauthors, 2010: The NCEP Climate Forecast System Reanalysis. Bull. Amer. Meteor. Soc., 91, 10151057, https://doi.org/10.1175/2010BAMS3001.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmetz, J., and M. Beniston, 1986: Relative effects of solar and infrared radiative forcing in a mesoscale model. Bound.-Layer Meteor., 34, 137155, https://doi.org/10.1007/BF00120913.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seidel, D. J., R. Ross, J. K. Angell, and G. C. Reid, 2001: Climatological characteristics of the tropical tropopause as revealed by radiosondes. J. Geophys. Res., 106, 78577878, https://doi.org/10.1029/2000JD900837.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp., https://dx.doi.org/10.5065/D68S4MVH.

    • Crossref
    • Export Citation
  • Sui, C.-H., A. Li, and K.-M. Lau, 1998: Radiative–convective processes in simulated diurnal variations of tropical oceanic convection. J. Atmos. Sci., 55, 23452357, https://doi.org/10.1175/1520-0469(1998)055<2345:RCPISD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tang, B., and K. A. Emanuel, 2010: Midlevel ventilation’s constraint on tropical cyclone intensity. J. Atmos. Sci., 67, 18171830, https://doi.org/10.1175/2010JAS3318.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tang, X., and F. Zhang, 2016: Impacts of the diurnal radiation cycle on the formation, intensity, and structure of Hurricane Edouard (2014). J. Atmos. Sci., 73, 28712892, https://doi.org/10.1175/JAS-D-15-0283.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tang, X., Z. Tan, J. Fang, Q. Sun, and F. Zhang, 2017: Impacts of diurnal radiation cycle on secondary eyewall formation. J. Atmos. Sci., 74, 30793098, https://doi.org/10.1175/JAS-D-17-0020.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, G., and T. Eidhammer, 2014: A study of aerosol impacts on clouds and precipitation development in a large winter cyclone. J. Atmos. Sci., 71, 36363658, https://doi.org/10.1175/JAS-D-13-0305.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tiedtke, M., 1989: A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon. Wea. Rev., 117, 17791800, https://doi.org/10.1175/1520-0493(1989)117<1779:ACMFSF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Van Sang, N., R. K. Smith, and M. T. Montgomery, 2008: Tropical cyclone intensification and predictability in three dimensions. Quart. J. Roy. Meteor. Soc., 134, 563582, https://doi.org/10.1002/qj.235.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, S., S. J. Camargo, A. H. Sobel, and L. M. Polvani, 2014: Impact of the tropopause temperature on the intensity of tropical cyclones: An idealized study using a mesoscale model. J. Atmos. Sci., 71, 43334348, https://doi.org/10.1175/JAS-D-14-0029.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Willoughby, H. E., 2009: Diabatically induced secondary flows in tropical cyclones. Part II: Periodic forcing. Mon. Wea. Rev., 137, 822835, https://doi.org/10.1175/2008MWR2658.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, K.-M., and D. A. Randall, 1995: Impact of interactive radiative transfer on the macroscopic behavior of cumulus ensembles. Part II: Mechanisms for cloud–radiation interactions. J. Atmos. Sci., 52, 800817, https://doi.org/10.1175/1520-0469(1995)052<0800:IOIRTO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 13 13 13
PDF Downloads 9 9 9

Impacts of Radiation and Upper-Tropospheric Temperatures on Tropical Cyclone Structure and Intensity

View More View Less
  • 1 Colorado State University, Fort Collins, Colorado
Restricted access

Abstract

Potential intensity theory predicts that the upper-tropospheric temperature acts as an important constraint on tropical cyclone (TC) intensity. The physical mechanisms through which the upper troposphere impacts TC intensity and structure have not been fully explored, however, due in part to limited observations and the complex interactions between clouds, radiation, and TC dynamics. In this study, idealized Weather Research and Forecasting Model ensembles initialized with a combination of three different tropopause temperatures and with no radiation, longwave radiation only, and full diurnal radiation are used to examine the physical mechanisms in the TC–upper-tropospheric temperature relationship on weather time scales. Simulated TC intensity and structure are strongly sensitive to colder tropopause temperatures using only longwave radiation, but are less sensitive using full radiation and no radiation. Colder tropopause temperatures result in deeper convection and increased ice mass aloft in all cases, but are more intense only when radiation was included. Deeper convection leads to increased local longwave cooling rates but reduced top-of-the-atmosphere outgoing longwave radiation, such that the total radiative heat sink is reduced from a Carnot engine perspective in stronger storms. We hypothesize that a balanced response in the secondary circulation described by the Eliassen equation arises from upper-troposphere radiative cooling anomalies that lead to stronger tangential winds. The results of this study further suggest that radiation and cloud–radiative feedbacks have important impacts on weather time scales.

Current affiliation: TriVector Services Inc., Huntsville, Alabama.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Benjamin Trabing, btrabing@colostate.edu

This article is included in the Tropical Cyclone Intensity Experiment (TCI) special collection.

Abstract

Potential intensity theory predicts that the upper-tropospheric temperature acts as an important constraint on tropical cyclone (TC) intensity. The physical mechanisms through which the upper troposphere impacts TC intensity and structure have not been fully explored, however, due in part to limited observations and the complex interactions between clouds, radiation, and TC dynamics. In this study, idealized Weather Research and Forecasting Model ensembles initialized with a combination of three different tropopause temperatures and with no radiation, longwave radiation only, and full diurnal radiation are used to examine the physical mechanisms in the TC–upper-tropospheric temperature relationship on weather time scales. Simulated TC intensity and structure are strongly sensitive to colder tropopause temperatures using only longwave radiation, but are less sensitive using full radiation and no radiation. Colder tropopause temperatures result in deeper convection and increased ice mass aloft in all cases, but are more intense only when radiation was included. Deeper convection leads to increased local longwave cooling rates but reduced top-of-the-atmosphere outgoing longwave radiation, such that the total radiative heat sink is reduced from a Carnot engine perspective in stronger storms. We hypothesize that a balanced response in the secondary circulation described by the Eliassen equation arises from upper-troposphere radiative cooling anomalies that lead to stronger tangential winds. The results of this study further suggest that radiation and cloud–radiative feedbacks have important impacts on weather time scales.

Current affiliation: TriVector Services Inc., Huntsville, Alabama.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Benjamin Trabing, btrabing@colostate.edu

This article is included in the Tropical Cyclone Intensity Experiment (TCI) special collection.

Save