• Ackerman, A. S., O. B. Toon, and P. V. Hobbs, 1995: A model for particle microphysics, turbulent mixing, and radiative transfer in the stratocumulus-topped marine boundary layer and comparisons with measurements. J. Atmos. Sci., 52, 12041236, https://doi.org/10.1175/1520-0469(1995)052<1204:AMFPMT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ackerman, A. S., M. P. Kirkpatrick, D. E. Stevens, and O. B. Toon, 2004: The impact of humidity above stratiform clouds on indirect aerosol climate forcing. Nature, 432, 10141017, https://doi.org/10.1038/nature03174.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alfonso, L., G. B. Raga, and D. Baumgardner, 2013: The validity of the kinetic collection equation revisited—Part 3: Sol–gel transition under turbulent conditions. Atmos. Chem. Phys., 13, 521529, https://doi.org/10.5194/acp-13-521-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ayala, O., B. Rosa, and L.-P. Wang, 2008: Effects of turbulence on the geometric collision rate of sedimenting droplets. Part 2. Theory and parameterization. New J. Phys., 10, 075016, https://doi.org/10.1088/1367-2630/10/7/075016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beard, K. V., 1976: Terminal velocity and shape of cloud and precipitation drops aloft. J. Atmos. Sci., 33, 851864, https://doi.org/10.1175/1520-0469(1976)033<0851:TVASOC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beard, K. V., and H. T. Ochs III, 1984: Collection and coalescence efficiencies for accretion. J. Geophys. Res., 89, 71657169, https://doi.org/10.1029/JD089iD05p07165.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berry, E. X., and R. L. Reinhardt, 1974: An analysis of cloud drop growth by collection: Part I. Double distributions. J. Atmos. Sci., 31, 18141824, https://doi.org/10.1175/1520-0469(1974)031<1814:AAOCDG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Böhm, J. P., 1999: Revision and clarification of “A general hydrodynamic theory for mixed-phase microphysics.” Atmos. Res., 52, 167176, https://doi.org/10.1016/S0169-8095(99)00033-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bott, A., 1998: A flux method for the numerical solution of the stochastic collection equation. J. Atmos. Sci., 55, 22842293, https://doi.org/10.1175/1520-0469(1998)055<2284:AFMFTN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bott, A., 2000: A flux method for the numerical solution of the stochastic collection equation: Extension to two-dimensional particle distributions. J. Atmos. Sci., 57, 284294, https://doi.org/10.1175/1520-0469(2000)057<0284:AFMFTN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clark, T. L., 1974: A study in cloud phase parameterization using the gamma distribution. J. Atmos. Sci., 31, 142155, https://doi.org/10.1175/1520-0469(1974)031<0142:ASICPP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cooper, W. A., R. T. Bruintjes, and G. K. Mather, 1997: Calculations pertaining to hygroscopic seeding with flares. J. Appl. Meteor., 36, 14491469, https://doi.org/10.1175/1520-0450(1997)036<1449:CPTHSW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., M. Andrejczuk, and L.-P. Wang, 2011: Droplet growth in a bin warm-rain scheme with Twomey CCN activation. Atmos. Res., 99, 290301, https://doi.org/10.1016/j.atmosres.2010.10.020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hall, W. D., 1980: A detailed microphysics model within a two-dimensional dynamic framework: Model description and preliminary results. J. Atmos. Sci., 37, 24862507, https://doi.org/10.1175/1520-0469(1980)037<2486:ADMMWA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • IPCC, 2013: Climate Change 2013: The Physical Science Basis. Cambridge University Press, 1535 pp., https://doi.org/10.1017/CBO9781107415324.

    • Crossref
    • Export Citation
  • Jacobson, M. Z., R. P. Turbo, E. J. Jensen, and O. B. Toon, 1994: Modeling coagulation among particles of different composition and size. Atmos. Environ., 28, 13271338, https://doi.org/10.1016/1352-2310(94)90280-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jensen, E. J., and Coauthors, 1998: Ice nucleation processes in upper tropospheric wave-clouds observed during SUCCESS. Geophys. Res. Lett., 25, 13631366, https://doi.org/10.1029/98GL00299.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khain, A., M. Ovtchinnikov, M. Pinsky, A. Pokrovsky, and H. Krugliak, 2000: Notes on the state-of-the-art numerical modeling of cloud microphysics. Atmos. Res., 55, 159224, https://doi.org/10.1016/S0169-8095(00)00064-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khain, A., and Coauthors, 2015: Representation of microphysical processes in cloud-resolving models: Spectral (bin) microphysics versus bulk parameterization. Rev. Geophys., 53, 247322, https://doi.org/10.1002/2014RG000468.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kollias, P., S. Tanelli, A. Battaglia, and A. Tatarevic, 2014: Evaluation of EarthCARE cloud profiling radar Doppler velocity measurements in particle sedimentation regimes. J. Atmos. Oceanic Technol., 31, 366386, https://doi.org/10.1175/JTECH-D-11-00202.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kovetz, A., and B. Olund, 1969: The effect of coalescence and condensation on rain formation in a cloud of finite vertical extent. J. Atmos. Sci., 26, 10601065, https://doi.org/10.1175/1520-0469(1969)026<1060:TEOCAC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Laird, N. F., H. T. Ochs III, R. M. Rauber, and L. J. Miller, 2000: Initial precipitation formation in warm Florida cumulus. J. Atmos. Sci., 57, 37403751, https://doi.org/10.1175/1520-0469(2000)057<3740:IPFIWF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lkhamjav, J., H. Lee, Y.-L. Jeon, and J.-J. Baik, 2017: Examination of an improved quasi-stochastic model for the collisional growth of drops. J. Geophys. Res. Atmos., 122, 17131724, https://doi.org/10.1002/2016JD025904.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Magaritz, L., M. Pinsky, O. Krasnov, and A. Khain, 2009: Investigation of droplet size distributions and drizzle formation using a new trajectory ensemble model. Part II: Lucky parcels. J. Atmos. Sci., 66, 781805, https://doi.org/10.1175/2008JAS2789.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McGraw, R., and Y. Liu, 2004: Analytic formulation and parametrization of the kinetic potential theory for drizzle formation. Phys. Rev., 70E, 031606, https://doi.org/10.1103/PhysRevE.70.031606.

    • Search Google Scholar
    • Export Citation
  • Mead, J. B., and K. B. Widener, 2005: W-band ARM cloud radar. 32nd Int. Conf. on Radar Meteorology, Albuquerque, NM, Amer. Meteor. Soc., P1R.3, https://ams.confex.com/ams/pdfpapers/95978.pdf.

  • Pinsky, M., A. Khain, and H. Krugliak, 2008: Collisions of cloud droplets in a turbulent flow. Part V: Application of detailed tables of turbulent collision rate enhancement to simulation of droplet spectra evolution. J. Atmos. Sci., 65, 357374, https://doi.org/10.1175/2007JAS2358.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prat, O. P., and A. P. Barros, 2007: A robust numerical solution of the stochastic collection–breakup equation for warm rain. J. Appl. Meteor. Climatol., 46, 14801497, https://doi.org/10.1175/JAM2544.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rémillard, J., and Coauthors, 2017: Use of cloud radar Doppler spectra to evaluate stratocumulus drizzle size distributions in large-eddy simulations with size-resolved microphysics. J. Appl. Meteor. Climatol., 56, 32633283, https://doi.org/10.1175/JAMC-D-17-0100.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seeßelberg, M., T. Trautmann, and M. Thorn, 1996: Stochastic simulations as a benchmark for mathematical methods solving the coalescence equation. Atmos. Res., 40, 3348, https://doi.org/10.1016/0169-8095(95)00024-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tzivion, S., T. G. Reisin, and Z. Levin, 1999: A numerical solution of the kinetic collection equation using high spectral grid resolution: A proposed reference. J. Comput. Phys., 148, 527544, https://doi.org/10.1006/jcph.1998.6128.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, L.-P., and W. W. Grabowski, 2009: The role of air turbulence in warm rain initiation. Atmos. Sci. Lett., 10, 18, https://doi.org/10.1002/asl.210.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, L.-P., Y. Xue, and W. W. Grabowski, 2007: A bin integral method for solving the kinetic collection equation. J. Comput. Phys., 226, 5988, https://doi.org/10.1016/j.jcp.2007.03.029.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wood, R., 2005: Drizzle in stratiform boundary layer clouds. Part I: Vertical and horizontal structure. J. Atmos. Sci., 62, 30113033, https://doi.org/10.1175/JAS3529.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wood, R., and Coauthors, 2015: Clouds, aerosols, and precipitation in the marine boundary layer: An ARM mobile facility deployment. Bull. Amer. Meteor. Soc., 96, 419440, https://doi.org/10.1175/BAMS-D-13-00180.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 6 6 6
PDF Downloads 5 5 5

An Evaluation of Size-Resolved Cloud Microphysics Scheme Numerics for Use with Radar Observations. Part I: Collision–Coalescence

View More View Less
  • 1 Center for Climate Systems Research, Columbia University, and NASA Goddard Institute for Space Studies, New York, New York
  • | 2 NASA Goddard Institute for Space Studies, New York, New York
Restricted access

Abstract

This study evaluates some available schemes designed to solve the stochastic collection equation (SCE) for collision–coalescence of hydrometeors using a size-resolved (bin) microphysics approach and documents their numerical properties within the framework of a box model. Comparing three widely used SCE schemes, we find that all converge to almost identical solutions at sufficiently fine mass grids. However, one scheme converges far slower than the other two and shows pronounced numerical diffusion at the large-drop tail of the size distribution. One of the remaining two schemes is recommended on the basis that it is well converged on a relatively coarse mass grid, stable for large time steps, strictly mass conservative, and computationally efficient. To examine the effects of SCE scheme choice on simulating clouds and precipitation, two of the three schemes are compared in large-eddy simulations of a drizzling stratocumulus field. A forward simulator that produces Doppler spectra from the large-eddy simulation results is used to compare the model output directly with radar observations. The scheme with pronounced numerical diffusion predicts excessively large mean Doppler velocities and overly broad and negatively skewed spectra compared with observations, consistent with numerical diffusion demonstrated in the box model. Statistics obtained using the recommended scheme are closer to observations, but notable differences remain, indicating that factors other than SCE scheme accuracy are limiting simulation fidelity.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Hyunho Lee, hyunho.lee@nasa.gov

Abstract

This study evaluates some available schemes designed to solve the stochastic collection equation (SCE) for collision–coalescence of hydrometeors using a size-resolved (bin) microphysics approach and documents their numerical properties within the framework of a box model. Comparing three widely used SCE schemes, we find that all converge to almost identical solutions at sufficiently fine mass grids. However, one scheme converges far slower than the other two and shows pronounced numerical diffusion at the large-drop tail of the size distribution. One of the remaining two schemes is recommended on the basis that it is well converged on a relatively coarse mass grid, stable for large time steps, strictly mass conservative, and computationally efficient. To examine the effects of SCE scheme choice on simulating clouds and precipitation, two of the three schemes are compared in large-eddy simulations of a drizzling stratocumulus field. A forward simulator that produces Doppler spectra from the large-eddy simulation results is used to compare the model output directly with radar observations. The scheme with pronounced numerical diffusion predicts excessively large mean Doppler velocities and overly broad and negatively skewed spectra compared with observations, consistent with numerical diffusion demonstrated in the box model. Statistics obtained using the recommended scheme are closer to observations, but notable differences remain, indicating that factors other than SCE scheme accuracy are limiting simulation fidelity.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Hyunho Lee, hyunho.lee@nasa.gov
Save