• Amoroso, L., 1925: Ricerche intorno alla curva dei redditi. Ann. Mat. Pura Appl., 2, 123159, https://doi.org/10.1007/BF02409935.

  • Andrić, J., M. R. Kumjian, D. S. Zrnić, J. M. Straka, and V. M. Melnikov, 2013: Polarimetric signatures above the melting layer in winter storms: An observational and modeling study. J. Appl. Meteor. Climatol., 52, 682700, https://doi.org/10.1175/JAMC-D-12-028.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Auer, A. H., and D. L. Veal, 1970: The dimension of ice crystals in natural clouds. J. Atmos. Sci., 27, 919926, https://doi.org/10.1175/1520-0469(1970)027<0919:TDOICI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bailey, M. P., and J. Hallett, 2009: A comprehensive habit diagram for atmospheric ice crystals: Confirmation from the laboratory, AIRS II, and other field studies. J. Atmos. Sci., 66, 28882899, https://doi.org/10.1175/2009JAS2883.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baker, B., and R. P. Lawson, 2006: Improvements in determination of ice water content from two-dimensional particle imagery. Part I: Image-to-mass relationships. J. Appl. Meteor. Climatol., 45, 12821290, https://doi.org/10.1175/JAM2398.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Böhm, J., 1989: A general equation for the terminal fall speed of solid hydrometeors. J. Atmos. Sci., 46, 24192427, https://doi.org/10.1175/1520-0469(1989)046<2419:AGEFTT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brandes, E., K. Ikeda, G. Zhang, M. Schönhuber, and R. M. Rasmussen, 2007: A statistical and physical description of hydrometeor distributions in Colorado snowstorms using a video disdrometer. J. Appl. Meteor. Climatol., 46, 634650, https://doi.org/10.1175/JAM2489.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brenguier, J.-L., and Coauthors, 2013: In situ measurements of cloud and precipitation particles. Airborne Measurements for Environmental Research: Methods and Instruments, M. Wendisch and J.-L. Brenguier, Eds., Wiley, 225–301.

  • Brown, P. R. A., and P. N. Francis, 1995: Improved measurements of the ice water content in cirrus using a total-water probe. J. Atmos. Oceanic Technol., 12, 410414, https://doi.org/10.1175/1520-0426(1995)012<0410:IMOTIW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, J.-P., and D. Lamb, 1994: The theoretical basis for the parameterization of ice crystal habit: Growth by vapor deposition. J. Atmos. Sci., 51, 12061221, https://doi.org/10.1175/1520-0469(1994)051<1206:TTBFTP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, J.-P., and T.-C. Tsai, 2016: Triple-moment modal parameterization for the adaptive growth habit of pristine ice crystals. J. Atmos. Sci., 73, 21052122, https://doi.org/10.1175/JAS-D-15-0220.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Connolly, P. J., C. Emersic, and P. R. Field, 2012: A laboratory investigation into the aggregation efficiency of small ice crystals. Atmos. Chem. Phys., 12, 20552076, https://doi.org/10.5194/acp-12-2055-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Erfani, E., and D. L. Mitchell, 2017: Growth of ice particle mass and projected area during riming. Atmos. Chem. Phys., 17, 12411257, https://doi.org/10.5194/acp-17-1241-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ferrier, B. S., 1994: A double-moment multiple-phase four-class bulk ice scheme. Part I: Description. J. Atmos. Sci., 51, 249280, https://doi.org/10.1175/1520-0469(1994)051<0249:ADMMPF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fukuta, N., and T. Takahashi, 1999: The growth of atmospheric ice crystals: A summary of findings in vertical supercooled cloud tunnel studies. J. Atmos. Sci., 56, 19631979, https://doi.org/10.1175/1520-0469(1999)056<1963:TGOAIC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garrett, T. J., S. E. Yuter, C. Fallgatter, K. Shukurko, S. R. Rhodes, and J. L. Endries, 2015: Orientations and aspect ratios of falling snow. Geophys. Res. Lett., 42, 46174622, https://doi.org/10.1002/2015GL064040.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harrington, J. Y., K. Sulia, and H. Morrison, 2013a: A method for adaptive habit prediction in bulk microphysical models. Part I: Theoretical development. J. Atmos. Sci., 70, 349364, https://doi.org/10.1175/JAS-D-12-040.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harrington, J. Y., K. Sulia, and H. Morrison, 2013b: A method for adaptive habit prediction in bulk microphysical models. Part II: Parcel model corroboration. J. Atmos. Sci., 70, 365376, https://doi.org/10.1175/JAS-D-12-0152.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hashino, T., and G. J. Tripoli, 2007: The Spectral Ice Habit Prediction System (SHIPS). Part I: Model description and simulation of vapor deposition process. J. Atmos. Sci., 64, 22102237, https://doi.org/10.1175/JAS3963.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hashino, T., and G. J. Tripoli, 2008: The Spectral Ice Habit Prediction System (SHIPS). Part II: Simulation of nucleation and depositional growth of polycrystals. J. Atmos. Sci., 65, 30713094, https://doi.org/10.1175/2008JAS2615.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hashino, T., and G. J. Tripoli, 2011: The Spectral Ice Habit Prediction System (SHIPS). Part III: Description of the ice particle model and the habit-dependent aggregation model. J. Atmos. Sci., 68, 11251141, https://doi.org/10.1175/2011JAS3666.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., A. Bansemer, P. R. Field, S. L. Durden, J. L. Stith, J. E. Dye, W. Hall, and C. A. Grainger, 2002: Observations and parameterizations of particle size distributions in deep tropical cirrus and stratiform precipitation clouds: Results from in situ observations in TRMM field campaigns. J. Atmos. Sci., 59, 34573491, https://doi.org/10.1175/1520-0469(2002)059<3457:OAPOPS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hogan, R. J., L. Tian, P. R. A. Brown, C. D. Westbrook, A. J. Heymsfield, and J. D. Eastment, 2012: Radar scattering from ice aggregates using the horizontally aligned oblate spheroid approximation. J. Appl. Meteor. Climatol., 51, 655671, https://doi.org/10.1175/JAMC-D-11-074.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jayaweera, K. O. L. F., and B. J. Mason, 1965: The behaviour of freely falling cylinders and cones in a viscous fluid. J. Fluid Mech., 22, 709720, https://doi.org/10.1017/S002211206500109X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jensen, A. A., J. Y. Harrington, H. Morrison, and J. A. Milbrandt, 2017: Predicting ice shape evolution in a bulk microphysics model. J. Atmos. Sci., 74, 20812104, https://doi.org/10.1175/JAS-D-16-0350.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiang, Z., M. Oue, J. Verlinde, E. Clothiaux, K. Aydin, G. Botta, and Y. Lu, 2017: What can we conclude about the real aspect ratios of ice particle aggregates from two-dimensional images? J. Appl. Meteor. Climatol., 56, 725734, https://doi.org/10.1175/JAMC-D-16-0248.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • King, W. D., 1985: Air flow and particle trajectories around aircraft fuselages. III: Extensions to particles of arbitrary shape. J. Atmos. Oceanic Technol., 2, 539547, https://doi.org/10.1175/1520-0426(1985)002<0539:AFAPTA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • King, W. D., 1986: Air flow and particle trajectories around aircraft fuselages. IV: Orientation of ice crystals. J. Atmos. Oceanic Technol., 3, 433439, https://doi.org/10.1175/1520-0426(1986)003<0433:AFAPTA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kintea, D. M., T. Hauk, I. V. Roisman, and C. Tropea, 2015: Shape evolution of a melting nonspherical particle. Phys. Rev., 92E, 033012, https://doi.org/10.1103/PhysRevE.92.033012.

    • Search Google Scholar
    • Export Citation
  • Klett, J. D., 1995: Orientation model for particles in turbulence. J. Atmos. Sci., 52, 22762285, https://doi.org/10.1175/1520-0469(1995)052<2276:OMFPIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Korolev, A., and G. Isaac, 2003: Roundness and aspect ratio of particles in ice clouds. J. Atmos. Sci., 60, 17951808, https://doi.org/10.1175/1520-0469(2003)060<1795:RAAROP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Korolev, A., G. Isaac, and J. Hallett, 2000: Ice particle habits in stratiform clouds. Quart. J. Roy. Meteor. Soc., 126, 28732902, https://doi.org/10.1002/qj.49712656913.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., 2013: Principles and applications of dual-polarization weather radar. Part I: Description of the polarimetric radar variables. J. Oper. Meteor., 1, 226242, https://doi.org/10.15191/nwajom.2013.0119.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lawson, R. P., and B. A. Baker, 2006: Improvement in determination of ice water content from two-dimensional particle imagery. Part II: Applications to collected data. J. Appl. Meteor. Climatol., 45, 12911303, https://doi.org/10.1175/JAM2399.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lawson, R. P., B. A. Baker, and C. G. Schmitt, 2001: An overview of microphysical properties of Arctic clouds observed in May and July 1998 during FIRE ACE. J. Geophys. Res., 106, 14 98915 014, https://doi.org/10.1029/2000JD900789.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lawson, R. P., B. A. Baker, B. Pilson, and Q. Mo, 2006a: In situ observations of the microphysical properties of wave, cirrus, and anvil clouds. Part II: Cirrus clouds. J. Atmos. Sci., 63, 31863203, https://doi.org/10.1175/JAS3803.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lawson, R. P., D. O’Conner, P. Zmarzly, K. Weaver, B. Baker, Q. Mo, and H. Honsson, 2006b: The 2D-S (stereo) probe: Design and preliminary tests of a new airborne, high-speed, high-resolution particle imaging probe. J. Atmos. Oceanic Technol., 23, 14621477, https://doi.org/10.1175/JTECH1927.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • List, R., and R. S. Schemenauer, 1971: Free-fall behavior of planar snow crystals, conical graupel and small hail. J. Atmos. Sci., 28, 110115, https://doi.org/10.1175/1520-0469(1971)028<0110:FFBOPS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Locatelli, J. D., and P. V. Hobbs, 1974: Fall speeds and masses of solid precipitation particles. J. Geophys. Res., 79, 21852197, https://doi.org/10.1029/JC079i015p02185.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshall, J. S., and M. P. Langleben, 1954: A theory of snow-crystal habit and growth. J. Meteor., 11, 104120, https://doi.org/10.1175/1520-0469(1954)011<0104:ATOSCH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mason, B. J., 1994: The shapes of snow crystals—Fitness for purpose? Quart. J. Roy. Meteor. Soc., 120, 849860, https://doi.org/10.1002/qj.49712051805.

    • Search Google Scholar
    • Export Citation
  • Matrosov, S. Y., R. F. Reinking, and I. V. Djalalova, 2005: Inferring fall attitudes of pristine dendritic crystals from polarimetric radar data. J. Atmos. Sci., 62, 241250, https://doi.org/10.1175/JAS-3356.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McFarquhar, G. M., A. J. Heymsfield, A. Macke, J. Iaquinta, and S. M. Aulenbach, 1999: Use of observed ice crystal sizes and shapes to calculate mean-scattering properties and multispectral radiances: CEPEX April 4, 1993, case study. J. Geophys. Res., 104, 31 76331 779, https://doi.org/10.1029/1999JD900802.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McFarquhar, G. M., T.-L. Hsieh, M. Freer, J. Mascio, and B. F. Jewett, 2015: The characterization of ice hydrometeor gamma size distributions as volumes in N0λμ phase space: Implications for microphysical process modeling. J. Atmos. Sci., 72, 892909, https://doi.org/10.1175/JAS-D-14-0011.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McFarquhar, G. M., and Coauthors, 2017: Processing of ice cloud in situ data collected by bulk water, scattering, and imaging probes: Fundamentals, uncertainties, and efforts toward consistency. Ice Formation and Evolution in Clouds and Precipitation: Measurement and Modeling Challenges, Meteor. Monogr., No. 58, Amer. Meteor. Soc., https://doi.org/10.1175/AMSMONOGRAPHS-D-16-0007.1.

    • Search Google Scholar
    • Export Citation
  • Milbrandt, J. A., and M. K. Yau, 2005: A multimoment bulk microphysics parameterization. Part I: Analysis of the role of the spectral shape parameter. J. Atmos. Sci., 62, 30513064, https://doi.org/10.1175/JAS3534.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mitchell, D. L., 1996: Use of mass- and area-dimensional power laws for determining precipitation particle terminal velocities. J. Atmos. Sci., 53, 17101723, https://doi.org/10.1175/1520-0469(1996)053<1710:UOMAAD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mitchell, D. L., and W. P. Arnott, 1994: A model predicting the evolution of ice particle size spectra and radiative properties of cirrus clouds. Part II: Dependence of absorption and extinction on ice crystal morphology. J. Atmos. Sci., 51, 817832, https://doi.org/10.1175/1520-0469(1994)051<0817:AMPTEO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morrison, H., and J. A. Milbrandt, 2015: Parameterization of cloud microphysics based on the prediction of bulk ice particle properties. Part I: Scheme description and idealized tests. J. Atmos. Sci., 72, 287311, https://doi.org/10.1175/JAS-D-14-0065.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morrison, H., J. A. Curry, and V. I. Khvorostyanov, 2005: A new double-moment microphysics parameterization for application in cloud and climate models. Part I: Description. J. Atmos. Sci., 62, 16651677, https://doi.org/10.1175/JAS3446.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Noel, V., and K. Sassen, 2005: Study of planar ice crystal orientations in ice clouds from scanning polarization lidar observations. J. Appl. Meteor., 44, 653664, https://doi.org/10.1175/JAM2223.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ono, A., 1969: The shape and riming properties of ice crystals in natural clouds. J. Atmos. Sci., 26, 138147, https://doi.org/10.1175/1520-0469(1969)026<0138:TSARPO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Petty, G. W., and W. Huang, 2011: The modified gamma size distribution applied to inhomogeneous and nonspherical particles: Key relationships and conversions. J. Atmos. Sci., 68, 14601473, https://doi.org/10.1175/2011JAS3645.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A., M. Pinsky, A. Pokrovsky, and A. Khain, 2011: Polarimetric radar observation operator for a cloud model with spectral microphysics. J. Appl. Meteor. Climatol., 50, 873894, https://doi.org/10.1175/2010JAMC2363.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sassen, K., 1987: Polarization and Brewster angle properties of light pillars. J. Opt. Soc. Amer., 4A, 570580, https://doi.org/10.1364/JOSAA.4.000570.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmitt, C. G., and A. J. Heymsfield, 2005: Total surface area estimates for individual ice particles and particle populations. J. Appl. Meteor., 44, 467474, https://doi.org/10.1175/JAM2209.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Siewert, C., R. P. J. Kunnen, M. Meinke, and W. Schröder, 2014: Orientation statistics and settling velocity of ellipsoids in decaying turbulence. Atmos. Res., 142, 4556, https://doi.org/10.1016/j.atmosres.2013.08.011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Srivastava, H. M., and P. W. Karlsson, 1985: Multiple Gaussian Hypergeometric Series. Ellis Horwood, 425 pp.

  • Taylor, J. R., 1997: An Introduction to Error Analysis: The Study of Uncertainties in Physical Measurements. University Science Books, 327 pp.

  • Thompson, G., P. R. Field, R. M. Rassmussen, and W. D. Hall, 2008: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: Implementation of a new snow parameterization. Mon. Wea. Rev., 136, 50955115, https://doi.org/10.1175/2008MWR2387.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Um, J., and G. M. McFarquhar, 2007: Single-scattering properties of aggregates of bullet rosettes in cirrus. J. Appl. Meteor. Climatol., 46, 757775, https://doi.org/10.1175/JAM2501.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Walko, R. L., W. R. Cotton, M. P. Meyers, and J. Y. Harrington, 1995: New RAMS cloud microphysics parameterization. Part I: The single-moment scheme. Atmos. Res., 38, 2962, https://doi.org/10.1016/0169-8095(94)00087-T.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Westbrook, C. D., R. C. Ball, P. R. Field, and A. J. Heymsfield, 2004: A theory of growth by differential sedimentation, with application to snowflake formation. Phys. Rev., 70E, 021403, https://doi.org/10.1103/PhysRevE.70.021403.

    • Search Google Scholar
    • Export Citation
  • Westbrook, C. D., R. J. Hogan, and A. J. Illingworth, 2008: The capacitance of pristine ice crystals and aggregate snowflakes. J. Atmos. Sci., 65, 206218, https://doi.org/10.1175/2007JAS2315.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, W., and G. M. McFarquhar, 2016: On the impacts of different definitions of maximum dimension for nonspherical particles recorded by 2D imaging probes. J. Atmos. Oceanic Technol., 33, 10571072, https://doi.org/10.1175/JTECH-D-15-0177.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, W., and G. M. McFarquhar, 2018: Statistical theory on the functional form of cloud particle size distributions. J. Atmos. Sci., 75, 28012814, https://doi.org/10.1175/JAS-D-17-0164.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 14 14 14
PDF Downloads 6 6 6

A General Method for Estimating Bulk 2D Projections of Ice Particle Shape: Theory and Applications

View More View Less
  • 1 The Pennsylvania State University, University Park, Pennsylvania
Restricted access

Abstract

The orientation of falling ice particles directly influences estimates of microphysical and radiative bulk quantities as well as in situ retrievals of size, shape, and mass. However, retrieval efforts and bulk calculations often incorporate very basic orientations or ignore these effects altogether. To address this deficiency, this study develops a general method for projecting bulk distributions of particle shape for arbitrary orientations. The Amoroso distribution provides the most general bulk aspect ratio distribution for gamma-distributed particle axis lengths. The parameters that govern the behavior of this aspect ratio distribution depend on the assumed relationship between mass, maximum dimension, and aspect ratio. Individual spheroidal geometry allows for eccentricity quantities to linearly map onto ellipse analogs, whereas aspect ratio quantities map nonlinearly. For particles viewed from their side, this analytic distinction leads to substantially larger errors in projected aspect ratio than for projected eccentricity. Distribution transformations using these mapping equations and numerical integration of projection kernels show that both truncation of size distributions and changes in Gaussian dispersion can alter the modality and shape of projection distributions. As a result, the projection process can more than triple the relative entropy between the spheroidal and projection distributions for commonly assumed model and orientation parameters. This shape uncertainty is maximized for distributions of highly eccentric particles and for particles like aggregates that are thought to fall with large canting-angle deviations. As a result, the methods used to report projected aspect ratios and the corresponding values should be questioned.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Edwin L. Dunnavan, eld172@psu.edu

Abstract

The orientation of falling ice particles directly influences estimates of microphysical and radiative bulk quantities as well as in situ retrievals of size, shape, and mass. However, retrieval efforts and bulk calculations often incorporate very basic orientations or ignore these effects altogether. To address this deficiency, this study develops a general method for projecting bulk distributions of particle shape for arbitrary orientations. The Amoroso distribution provides the most general bulk aspect ratio distribution for gamma-distributed particle axis lengths. The parameters that govern the behavior of this aspect ratio distribution depend on the assumed relationship between mass, maximum dimension, and aspect ratio. Individual spheroidal geometry allows for eccentricity quantities to linearly map onto ellipse analogs, whereas aspect ratio quantities map nonlinearly. For particles viewed from their side, this analytic distinction leads to substantially larger errors in projected aspect ratio than for projected eccentricity. Distribution transformations using these mapping equations and numerical integration of projection kernels show that both truncation of size distributions and changes in Gaussian dispersion can alter the modality and shape of projection distributions. As a result, the projection process can more than triple the relative entropy between the spheroidal and projection distributions for commonly assumed model and orientation parameters. This shape uncertainty is maximized for distributions of highly eccentric particles and for particles like aggregates that are thought to fall with large canting-angle deviations. As a result, the methods used to report projected aspect ratios and the corresponding values should be questioned.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Edwin L. Dunnavan, eld172@psu.edu
Save