• Ambaum, M. H. P., 2008: Unimodality of wave amplitude in the Northern Hemisphere. J. Atmos. Sci., 65, 10771086, https://doi.org/10.1175/2007JAS2298.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ambaum, M. H. P., B. J. Hoskins, and D. B. Stephenson, 2001: Arctic Oscillation or North Atlantic Oscillation. J. Climate, 14, 34953507, https://doi.org/10.1175/1520-0442(2001)014<3495:AOONAO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berner, J., and G. Branstator, 2007: Linear and nonlinear signatures in the planetary wave dynamics of an AGCM: Probability density functions. J. Atmos. Sci., 64, 117136, https://doi.org/10.1175/JAS3822.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bjerknes, J., 1969: Atmospheric teleconnections from the equatorial Pacific. Mon. Wea. Rev., 97, 163172, https://doi.org/10.1175/1520-0493(1969)097<0163:ATFTEP>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boser, B. E., I. M. Guyon, and V. N. Vapnik, 1992: A training algorithm for optimal margin classifier. Proc. Fifth Annual ACM Workshop on Computational Learning Theory, Pittsburgh, PA, Association for Computing Machinery, 144–152.

    • Crossref
    • Export Citation
  • Branstator, G., and S. E. Haupt, 1998: An empirical model of barotropic atmospheric dynamics and its response to tropical forcing. J. Climate, 11, 26452667, https://doi.org/10.1175/1520-0442(1998)011<2645:AEMOBA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Branstator, G., and J. Berner, 2005: Linear and nonlinear signatures in the planetary wave dynamics of an AGCM: Phase space tendencies. J. Atmos. Sci., 62, 17921811, https://doi.org/10.1175/JAS3429.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Charney, J. G., and J. G. Devore, 1979: Multiple flow equilibria in the atmosphere and blocking. J. Atmos. Sci., 36, 12051216, https://doi.org/10.1175/1520-0469(1979)036<1205:MFEITA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Christiansen, B., 2003: Evidence for nonlinear climate change: Two stratospheric regimes and a regime shift. J. Climate, 16, 36813689, https://doi.org/10.1175/1520-0442(2003)016<3681:EFNCCT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Christiansen, B., 2005a: On the bimodality of the planetary-scale atmospheric wave amplitude index. J. Atmos. Sci., 62, 25282541, https://doi.org/10.1175/JAS3490.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Christiansen, B., 2005b: The shortcomings of nonlinear principal component analysis in identifying circulation regimes. J. Climate, 18, 48144823, https://doi.org/10.1175/JCLI3569.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Christiansen, B., 2007: Atmospheric circulation regimes: Can cluster analysis provide the number? J. Climate, 20, 22292250, https://doi.org/10.1175/JCLI4107.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Christiansen, B., 2009: Is the atmosphere interesting? A projection pursuit study of the circulation in the Northern Hemisphere winter. J. Climate, 22, 12391254, https://doi.org/10.1175/2008JCLI2633.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Corti, S., F. Molteni, and T. N. Palmer, 1999: Signature of recent climate change in frequencies of natural atmospheric circulation regimes. Nature, 398, 799802, https://doi.org/10.1038/19745.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • D’Andrea, F., 2002: Extratropical low-frequency variability as a low-dimensional problem. II: Stationarity and stability of large-scale equilibria. Quart. J. Roy. Meteor. Soc., 128, 10591074, https://doi.org/10.1256/003590002320373201.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • D’Andrea, F., and R. Vautard, 2001: Extratropical low-frequency variability as a low-dimensional problem I: A simplified model. Quart. J. Roy. Meteor. Soc., 127, 13571374, https://doi.org/10.1002/qj.49712757413.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dawson, A., T. Palmer, and S. Corti, 2012: Simulating regime structures in weather and climate prediction models. Geophys. Res. Lett., 39, L21805, https://doi.org/10.1029/2012GL053284.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feldstein, S. B., and C. L. E. Franzke, 2017: Atmospheric teleconnection patterns. Nonlinear and Stochastic Climate Dynamics, C. L. E. Franzke and T. J. O’Kane, Eds., Cambridge University Press, 144–152.

  • Fereday, D., 2017: How persistent are North Atlantic–European sector weather regimes? J. Climate, 30, 23812394, https://doi.org/10.1175/JCLI-D-16-0328.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fereday, D., J. Knight, A. Scaife, C. Folland, and A. Philipp, 2008: Cluster analysis of North Atlantic–European circulation types and links with tropical Pacific sea surface temperature. J. Climate, 21, 36873703, https://doi.org/10.1175/2007JCLI1875.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Franzke, C., I. Horenko, A. J. Majda, and R. Klein, 2009: Systematic metastable atmospheric regime identification in an AGCM. J. Atmos. Sci., 66, 19972012, https://doi.org/10.1175/2009JAS2939.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frederiksen, J. S., and G. Branstator, 2005: Seasonal variability of teleconnection patterns. J. Atmos. Sci., 62, 13461365, https://doi.org/10.1175/JAS3405.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gritsun, A., 2013: Statistical characteristics, circulation regimes and unstable periodic orbits of a barotropic atmospheric model. Philos. Trans. Roy. Soc., 371A, 20120336, https://doi.org/10.1098/rsta.2012.0336.

    • Search Google Scholar
    • Export Citation
  • Haines, K., and A. Hannachi, 1995: Weather regimes in the Pacific from a GCM. J. Atmos. Sci., 52, 24442462, https://doi.org/10.1175/1520-0469(1995)052<2444:WRITPF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hannachi, A., 1997a: Weather regimes in the Pacific from a GCM. Part II: Dynamics and stability. J. Atmos. Sci., 54, 13341348, https://doi.org/10.1175/1520-0469(1997)054<1334:WRITPF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hannachi, A., 1997b: Low-frequency variability in a GCM: Three-dimensional flow regimes and their dynamics. J. Climate, 10, 13571379, https://doi.org/10.1175/1520-0442(1997)010<1357:LFVIAG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hannachi, A., 2007: Tropospheric planetary wave dynamics and mixture modelling: Two preferred regime shift. J. Atmos. Sci., 64, 35213541, https://doi.org/10.1175/JAS4045.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hannachi, A., 2010: On the origin of planetary-scale extratropical winter circulation regimes. J. Atmos. Sci., 67, 13821401, https://doi.org/10.1175/2009JAS3296.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hannachi, A., 2016: Regularised empirical orthogonal functions. Tellus, 68A, 31723, https://doi.org/10.3402/tellusa.v68.31723.

  • Hannachi, A., I. T. Jolliffe, and D. B. Stephenson, 2007: Empirical orthogonal functions and related techniques in atmospheric science: A review. Int. J. Climatol., 27, 11191152, https://doi.org/10.1002/joc.1499.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hannachi, A., D. Mitchell, L. Gray, and A. Charlton-Perez, 2011: On the use of geometric moments to examine the continuum of sudden stratospheric warmings. J. Atmos. Sci., 68, 657674, https://doi.org/10.1175/2010JAS3585.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hannachi, A., T. Woollings, and K. Fraedrich, 2012: The North Atlantic jet stream: A look at preferred positions, paths and transitions. Quart. J. Roy. Meteor. Soc., 138, 862877, https://doi.org/10.1002/qj.959.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hannachi, A., D. M. Straus, C. L. E. Franzke, S. Corti, and T. Woollings, 2017: Low-frequency nonlinearity and regime behavior in the Northern Hemisphere extratropical atmosphere. Rev. Geophys., 55, 199234, https://doi.org/10.1002/2015RG000509.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hansen, A. R., and A. Sutera, 1986: On the probability density distribution of large-scale atmospheric wave amplitude. J. Atmos. Sci., 43, 32503265, https://doi.org/10.1175/1520-0469(1986)043<3250:OTPDDO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harada, Y., and Coauthors, 2016: The JRA-55 Reanalysis: Representation of atmospheric circulation and climate variability. J. Meteor. Soc. Japan, 94, 269302, https://doi.org/10.2151/jmsj.2016-015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., and D. J. Karoly, 1981: The steady linear response of a spherical atmosphere to thermal and orographic forcing. J. Atmos. Sci., 38, 11791196, https://doi.org/10.1175/1520-0469(1981)038<1179:TSLROA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kobayashi, S., and Coauthors, 2015: The JRA-55 Reanalysis: General specifications and basic characteristics. J. Meteor. Soc. Japan, 93, 548, https://doi.org/10.2151/jmsj.2015-001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kondrashov, D., K. Ide, and M. Ghil, 2004: Weather regimes and preferred transition paths in a three-level quasigeostrophic model. J. Atmos. Sci., 61, 568587, https://doi.org/10.1175/1520-0469(2004)061<0568:WRAPTP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koo, S., A. W. Robertson, and M. Ghil, 2002: Multiple regimes and low-frequency oscillations in the Southern Hemisphere’s zonal-mean flow. J. Geophys. Res., 107, 4596, https://doi.org/10.1029/2001JD001353.

    • Search Google Scholar
    • Export Citation
  • Kushnir, Y., W. A. Robinson, I. Bladé, N. M. Hall, S. Peng, and R. Sutton, 2002: Atmospheric GCM response to extratropical SST anomalies: Synthesis and evaluation. J. Climate, 15, 22332256, https://doi.org/10.1175/1520-0442(2002)015<2233:AGRTES>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kwasniok, F., R. Beaumont, and J. Thuburn, 2018: Vortex dynamics of stratospheric sudden warmings: A reanalysis data study using PV contour integral diagnostics. Quart. J. Roy. Meteor. Soc., in press.

    • Search Google Scholar
    • Export Citation
  • Lau, K.-M., P.-J. Sheu, and I.-S. Kang, 1994: Multiscale low-frequency circulation modes in the global atmosphere. J. Atmos. Sci., 51, 11691193, https://doi.org/10.1175/1520-0469(1994)051<1169:MLFCMI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Legras, B., and M. Ghil, 1985: Persistent anomalies, blocking and variations in atmospheric predictability. J. Atmos. Sci., 42, 433471, https://doi.org/10.1175/1520-0469(1985)042<0433:PABAVI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lorenz, E. N., 1963: Deterministic nonperiodic flow. J. Atmos. Sci., 20, 130141, https://doi.org/10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lorenz, E. N., 1970: Climate change as a mathematical problem. J. Appl. Meteor., 9, 325329, https://doi.org/10.1175/1520-0450(1970)009<0325:CCAAMP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshall, J. C., and F. Molteni, 1993: Toward a dynamical understanding of planetary-scale flow regimes. J. Atmos. Sci., 50, 17921818, https://doi.org/10.1175/1520-0469(1993)050<1792:TADUOP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., and H. van Loon, 1979: The seesaw in winter temperatures between Greenland and northern Europe. Part III: Teleconnections with lower latitudes. Mon. Wea. Rev., 107, 10951106, https://doi.org/10.1175/1520-0493(1979)107<1095:TSIWTB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Michelangeli, P.-A., R. Vautard, and B. Legras, 1995: Weather regimes: Recurrence and quasi stationarity. J. Atmos. Sci., 52, 12371256, https://doi.org/10.1175/1520-0469(1995)052<1237:WRRAQS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mitchell, D. M., L. J. Gray, J. Anstey, M. P. Baldwin, and A. J. Charlton-Perez, 2013: The influence of stratospheric vortex displacements and splits on surface climate. J. Climate, 26, 26682682, https://doi.org/10.1175/JCLI-D-12-00030.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moiseiwitsch, B., 1977: Integral Equations. Longman, 161 pp.

  • Molteni, F., 1996a: On the dynamics of planetary flow regimes. Part I: The role of high-frequency transients. J. Atmos. Sci., 53, 19501971, https://doi.org/10.1175/1520-0469(1996)053<1950:OTDOPF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Molteni, F., 1996b: On the dynamics of planetary flow regimes. Part II: Results from a hierarchy of orographically forced models. J. Atmos. Sci., 53, 19721992, https://doi.org/10.1175/1520-0469(1996)053<1972:OTDOPF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Molteni, F., and S. Corti, 1998: Long-term fluctuations in the statistical properties of low-frequency variability: Dynamical origin and predictability. Quart. J. Roy. Meteor. Soc., 124, 495526, https://doi.org/10.1002/qj.49712454607.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Monahan, A. H., J. C. Fyfe, and G. M. Flato, 2000: A regime view of Northern Hemisphere atmospheric variability and change under global warming. Geophys. Res. Lett., 27, 11391142, https://doi.org/10.1029/1999GL011111.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mukhin, D., A. Gavrilov, A. Feigin, E. Loskutov, and J. Kurths, 2015: Principal nonlinear dynamical modes of climate variability. Sci. Rep., 5, 15510, https://doi.org/10.1038/srep15510.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Namias, J., 1950: The index cycle and its role in the general circulation. Mon. Wea. Rev., 7, 130139, https://doi.org/10.1175/1520-0469(1950)007<0130:TICAIR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Namias, J., 1978: Multiple causes of the North American abnormal winter 1976–77. Mon. Wea. Rev., 106, 279295, https://doi.org/10.1175/1520-0493(1978)106<0279:MCOTNA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Newman, M., P. D. Sardeshmukh, C. R. Winkler, and J. S. Whitaker, 2003: A study of subseasonal predictability. Mon. Wea. Rev., 131, 17151732, https://doi.org/10.1175//2558.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nitsche, G., J. M. Wallace, and C. Kooperberg, 1994: Is there evidence of multiple equilibria in planetary wave amplitude statistics? J. Atmos. Sci., 51, 314322, https://doi.org/10.1175/1520-0469(1994)051<0314:ITEOME>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O’Kane, T. J., D. P. Monselesan, J. S. Risbey, I. Horenko, and C. L. E. Franzke, 2017: On memory, dimension, and atmospheric teleconnections. Math. Climate Wea. Forecasting, 3, 127, https://doi.org/10.1515/mcwf-2017-0001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Palmer, T. N., 1993: Extended-range atmospheric prediction and the Lorenz model. Bull. Amer. Meteor. Soc., 74, 4965, https://doi.org/10.1175/1520-0477(1993)074<0049:ERAPAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Penland, C., and P. Sardeshmukh, 1995: The optimal growth of tropical sea surface temperature anomalies. J. Climate, 8, 19992024, https://doi.org/10.1175/1520-0442(1995)008<1999:TOGOTS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peters, J. M., and S. Kravtsov, 2012: Origin of non-Gaussian regimes and predictability in an atmospheric model. J. Atmos. Sci., 69, 25872599, https://doi.org/10.1175/JAS-D-11-0316.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Proistosescu, C., A. Rhines, and P. Huybers, 2016: Identification and interpretation of nonnormality in atmospheric time series. Geophys. Res. Lett., 43, 54255434, https://doi.org/10.1002/2016GL068880.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Risbey, J. S., T. J. O’Kane, D. P. Monselesan, C. Franzke, and I. Horenko, 2015: Metastability of Northern Hemisphere teleconnection modes. J. Atmos. Sci., 72, 3554, https://doi.org/10.1175/JAS-D-14-0020.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rogers, J. C., and H. Van Loon, 1979: The seesaw in winter temperatures between Greenland and northern Europe. Part II: Some oceanic and atmospheric effects in middle and high latitudes. Mon. Wea. Rev., 107, 509519, https://doi.org/10.1175/1520-0493(1979)107<0509:TSIWTB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rossby, C.-G., 1940: Planetary flow patterns in the atmosphere. Quart. J. Roy. Meteor. Soc., 66, 6887.

  • Schölkopf, B., A. Smola, and K.-R. Müller, 1998: Nonlinear component analysis as a kernel eigenvalue problem. Neural Comput., 10, 12991319, https://doi.org/10.1162/089976698300017467.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Selten, F. M., and G. Branstator, 2004: Preferred regime transition routes and evidence for an unstable periodic orbit in a baroclinic model. J. Atmos. Sci., 61, 22672282, https://doi.org/10.1175/1520-0469(2004)061<2267:PRTRAE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sempf, M., K. Dethloff, D. Handorf, and M. Kurgansky, 2007a: Circulation regimes due to attractor merging in atmospheric models. J. Atmos. Sci., 64, 20292044, https://doi.org/10.1175/JAS3923.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sempf, M., K. Dethloff, D. Handorf, and M. Kurgansky, 2007b: Toward understanding the dynamical origin of atmospheric regime behavior in a baroclinic model. J. Atmos. Sci., 64, 887904, https://doi.org/10.1175/JAS3862.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Silverman, B. W., 1986: Density Estimation for Statistics and Data Analysis. Chapman and Hall, 176 pp.

    • Crossref
    • Export Citation
  • Stephenson, D. B., A. Hannachi, and A. O’Neill, 2004: On the existence of multiple climate regimes. Quart. J. Roy. Meteor. Soc., 130, 583605, https://doi.org/10.1256/qj.02.146.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sura, P., and A. Hannachi, 2015: Perspectives of non-Gaussianity in atmospheric synoptic and low-frequency variability. J. Climate, 28, 50915114, https://doi.org/10.1175/JCLI-D-14-00572.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, D., and J. M. Wallace, 1998: The Arctic Oscillation signature in wintertime geopotential height and temperature field. Geophys. Res. Lett., 25, 12971300, https://doi.org/10.1029/98GL00950.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Toth, Z., 1991: Circulation patterns in phase space: A multinormal distribution? Mon. Wea. Rev., 119, 15011511, https://doi.org/10.1175/1520-0493(1991)119<1501:CPIPSA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Uppala, S. M., and Coauthors, 2005: The ERA-40 Re-analysis. Quart. J. Roy. Meteor. Soc., 131, 29613012, https://doi.org/10.1256/qj.04.176.

  • Vannitsem, S., 2001: Toward a phase-space cartography of the short- and medium-range predictability of weather regimes. Tellus, 53A, 5673, https://doi.org/10.3402/tellusa.v53i1.12180.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vannitsem, S., 2017: Predictability of large-scale atmospheric motions: Lyapunov exponents and error dynamics. Chaos, 27, 032101, https://doi.org/10.1063/1.4979042.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., and D. S. Gutzler, 1981: Teleconnections in the geopotential height field during the Northern Hemisphere winter. Mon. Wea. Rev., 109, 784812, https://doi.org/10.1175/1520-0493(1981)109<0784:TITGHF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wiin-Nielsen, A., 1979: Steady states and stability properties of a low-order barotropic system with forcing and dissipation. Tellus, 31, 375386, https://doi.org/10.3402/tellusa.v31i5.10452.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Woollings, T., A. Hannachi, B. J. Hoskins, and A. Turner, 2010a: A regime view of the North Atlantic Oscillation and its response to anthropogenic forcing. J. Climate, 23, 12911307, https://doi.org/10.1175/2009JCLI3087.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Woollings, T., A. Hannachi, and B. J. Hoskins, 2010b: Variability of the North Atlantic eddy-driven jet stream. Quart. J. Roy. Meteor. Soc., 136, 856868, https://doi.org/10.1002/qj.625.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 7 7 7
PDF Downloads 2 2 2

On the Nonlinearity of Winter Northern Hemisphere Atmospheric Variability

View More View Less
  • 1 Department of Meteorology, Stockholm University, Stockholm, Sweden
Restricted access

Abstract

Nonlinearity in the Northern Hemisphere’s wintertime atmospheric flow is investigated from both an intermediate-complexity model of the extratropics and reanalyses. A long simulation is obtained using a three-level quasigeostrophic model on the sphere. Kernel empirical orthogonal functions (EOFs), which help delineate complex structures, are used along with the local flow tendencies. Two fixed points are obtained, which are associated with strong bimodality in two-dimensional kernel principal component (PC) space, consistent with conceptual low-order dynamics. The regimes reflect zonal and blocked flows. The analysis is then extended to ERA-40 and JRA-55 using daily sea level pressure (SLP) and geopotential heights in the stratosphere (20 hPa) and troposphere (500 hPa). In the stratosphere, trimodality is obtained, representing disturbed, displaced, and undisturbed states of the winter polar vortex. In the troposphere, the probability density functions (PDFs), for both fields, within the two-dimensional (2D) kernel EOF space are strongly bimodal. The modes correspond broadly to opposite phases of the Arctic Oscillation with a signature of the negative North Atlantic Oscillation (NAO). Over the North Atlantic–European sector, a trimodal PDF is also obtained with two strong and one weak modes. The strong modes are associated, respectively, with the north (or +NAO) and south (or −NAO) positions of the eddy-driven jet stream. The third weak mode is interpreted as a transition path between the two positions. A climate change signal is also observed in the troposphere of the winter hemisphere, resulting in an increase (a decrease) in the frequency of the polar high (low), consistent with an increase of zonal flow frequency.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: A. Hannachi, a.hannachi@misu.su.se

Abstract

Nonlinearity in the Northern Hemisphere’s wintertime atmospheric flow is investigated from both an intermediate-complexity model of the extratropics and reanalyses. A long simulation is obtained using a three-level quasigeostrophic model on the sphere. Kernel empirical orthogonal functions (EOFs), which help delineate complex structures, are used along with the local flow tendencies. Two fixed points are obtained, which are associated with strong bimodality in two-dimensional kernel principal component (PC) space, consistent with conceptual low-order dynamics. The regimes reflect zonal and blocked flows. The analysis is then extended to ERA-40 and JRA-55 using daily sea level pressure (SLP) and geopotential heights in the stratosphere (20 hPa) and troposphere (500 hPa). In the stratosphere, trimodality is obtained, representing disturbed, displaced, and undisturbed states of the winter polar vortex. In the troposphere, the probability density functions (PDFs), for both fields, within the two-dimensional (2D) kernel EOF space are strongly bimodal. The modes correspond broadly to opposite phases of the Arctic Oscillation with a signature of the negative North Atlantic Oscillation (NAO). Over the North Atlantic–European sector, a trimodal PDF is also obtained with two strong and one weak modes. The strong modes are associated, respectively, with the north (or +NAO) and south (or −NAO) positions of the eddy-driven jet stream. The third weak mode is interpreted as a transition path between the two positions. A climate change signal is also observed in the troposphere of the winter hemisphere, resulting in an increase (a decrease) in the frequency of the polar high (low), consistent with an increase of zonal flow frequency.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: A. Hannachi, a.hannachi@misu.su.se
Save