• Acevedo, O. C., and D. R. Fitzjarrald, 2003: In the core of the night—Effects of intermittent mixing on a horizontally heterogeneous surface. Bound.-Layer Meteor., 106, 133, https://doi.org/10.1023/A:1020824109575.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Acevedo, O. C., L. Mahrt, F. S. Puhales, F. D. Costa, L. E. Medeiros, and G. A. Degrazia, 2016: Contrasting structures between the decoupled and coupled states of the stable boundary layer. Quart. J. Roy. Meteor. Soc., 142, 693702, https://doi.org/10.1002/qj.2693.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Acevedo, O. C., and Coauthors, 2018: Monitoring the micrometeorology of a coastal site next to a thermal power plant from the surface to 140 m. Bull. Amer. Meteor. Soc., 99, 725738, https://doi.org/10.1175/BAMS-D-17-0134.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anfossi, D., D. Oettl, G. Degrazia, and A. Goulart, 2005: An analysis of sonic anemometer observations in low wind speed conditions. Bound.-Layer Meteor., 114, 179203, https://doi.org/10.1007/s10546-004-1984-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baas, P., B. J. H. van de Weil, S. J. A. van der Linden, and F. C. Bosveld, 2018: From near-neutral to strongly stratified: Adequately modelling the clear-sky nocturnal boundary layer at Cabauw. Bound.-Layer Meteor., 166, 217238, https://doi.org/10.1007/s10546-017-0304-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Banta, R. M., L. Mahrt, D. Vickers, J. Sun, B. B. Balsley, Y. L. Pichugina, and E. J. Williams, 2007: The very stable boundary layer on nights with weak low-level jets. J. Atmos. Sci., 64, 30683090, https://doi.org/10.1175/JAS4002.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bates, D. M., and J. M. Chambers, 1992. Nonlinear models. Statistical Models in S, J. M. Chambers and T. J. Hastie, Eds., Wadsworth and Brooks/Cole, 421–454.

    • Crossref
    • Export Citation
  • Bou-Zeid, E., X. Gao, C. Ansorge, and G. G. Katul, 2018: On the role of return to isotropy in wall-bounded turbulent flows with buoyancy. J. Fluid Mech., 856, 6178, https://doi.org/10.1017/jfm.2018.693.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cava, D., L. Mortarini, U. Giostra, R. Richiardone, and D. Anfossi, 2017: A wavelet analysis of low-wind-speed submeso motions in a nocturnal boundary layer. Quart. J. Roy. Meteor. Soc., 143, 661669, https://doi.org/10.1002/qj.2954.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cava, D., L. Mortarini, D. Anfossi, and U. Giostra, 2019: Interaction of submeso motions in the Antarctic stable boundary layer. Bound.-Layer Meteor., https://doi.org/10.1007/s10546-019-00426-7

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dias-Júnior, C. Q., L. D. A. , E. P. Marques Filho, R. A. Santana, M. Mauder, and A. O. Manzi, 2017: Turbulence regimes in the stable boundary layer above and within the Amazon forest. Agric. For. Meteor., 233, 122132, https://doi.org/10.1016/j.agrformet.2016.11.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goulart, A., G. Degrazia, O. Acevedo, and D. Anfossi, 2007: Theoretical considerations of meandering wind in simplified conditions. Bound.-Layer Meteor., 125, 279287, https://doi.org/10.1007/s10546-007-9179-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hanna, S. R., 1990: Lateral dispersion in light-wind stable conditions. Nuovo Cimento, 13C, 889894, https://doi.org/10.1007/BF02514777.

  • Joffre, S. M., and T. Laurila, 1988: Standard deviations of wind speed and direction from observations over a smooth surface. J. Appl. Meteor., 27, 550561, https://doi.org/10.1175/1520-0450(1988)027<0550:SDOWSA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kaimal, J. C., and J. J. Finnigan, 1994: Atmospheric Boundary Layer Flows. Oxford University Press, 289 pp.

    • Crossref
    • Export Citation
  • Katul, G. G., A. Porporato, S. Shah, and E. Bou-Zeid, 2014: Two phenomenological constants explain similarity laws in stably stratified turbulence. Phys. Rev., 89E, 023007, https://doi.org/10.1103/PhysRevE.89.023007.

    • Search Google Scholar
    • Export Citation
  • Lan, C., H. Liu, D. Li, G. Katul, and D. Finn, 2018: Distinct turbulence structure in stably stratified boundary layers with weak and strong surface shear. J. Geophys. Res. Atmos., 123, 78397854, https://doi.org/10.1029/2018JD028628.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luhar, A. K., P. J. Hurley, and K. N. Rayner, 2009: Modelling near-surface low winds over land under stable conditions: Sensitivity tests, flux-gradient relationships, and stability parameters. Bound.-Layer Meteor., 130, 249274, https://doi.org/10.1007/s10546-008-9341-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mahrt, L., 2011: The near-calm stable boundary layer. Bound.-Layer Meteor., 140, 343360, https://doi.org/10.1007/s10546-011-9616-2.

  • Mahrt, L., and N. Gamage, 1987: Observations of turbulence in stratified flow. J. Atmos. Sci., 44, 11061121, https://doi.org/10.1175/1520-0469(1987)044<1106:OOTISF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mahrt, L., and D. Vickers, 2006: Extremely weak mixing in stable conditions. Bound.-Layer Meteor., 119, 1939, https://doi.org/10.1007/s10546-005-9017-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mahrt, L., J. Sun, W. Blumen, T. Delany, and S. Oncley, 1998: Nocturnal boundary layer regimes. Bound.-Layer Meteor., 88, 255278, https://doi.org/10.1023/A:1001171313493.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mahrt, L., S. Richardson, N. Seaman, and D. Stauffer, 2012: Turbulence in the nocturnal boundary layer with light and variable winds. Quart. J. Roy. Meteor. Soc., 138, 14301439, https://doi.org/10.1002/qj.1884.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mahrt, L., C. Thomas, S. Richardson, N. Seaman, D. Stauffer, and M. Zeeman, 2013: Non-stationarity generation of weak turbulence for very stable and weak-wind conditions. Bound.-Layer Meteor., 147, 179199, https://doi.org/10.1007/s10546-012-9782-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Malhi, Y. S., 1995: The significance of the dual solutions for heat fluxes measured by the temperature fluctuation method in stable conditions. Bound.-Layer Meteor., 74, 389396, https://doi.org/10.1007/BF00712379.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mellor, G. L., and T. Yamada, 1982: Development of a turbulence closure model for geophysical fluid problems. Rev. Geophys., 20, 851875, https://doi.org/10.1029/RG020i004p00851.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Monahan, A. H., T. Rees, Y. P. He, and N. McFarlane, 2015: Multiple regimes of wind, stratification, and turbulence in the stable boundary layer. J. Atmos. Sci., 72, 31783198, https://doi.org/10.1175/JAS-D-14-0311.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mortarini, L., E. Ferrero, S. Falabino, S. Trini Castelli, R. Richiardone, and D. Anfossi, 2013: Low-frequency processes and turbulence structure in a perturbed boundary layer. Quart. J. Roy. Meteor. Soc., 139, 10591072, https://doi.org/10.1002/qj.2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mortarini, L., S. Maldaner, L. Moor, M. Stefanello, O. Acevedo, G. Degrazia, and D. Anfossi, 2016a: Temperature auto-correlation and spectra functions in low-wind meandering conditions. Quart. J. Roy. Meteor. Soc., 142, 18811889, https://doi.org/10.1002/qj.2796.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mortarini, L., M. Stefanello, G. Degrazia, D. Roberti, S. Trini Castelli, and D. Anfossi, 2016b: Characterization of wind meandering in low-wind-speed conditions. Bound.-Layer Meteor., 161, 165182, https://doi.org/10.1007/s10546-016-0165-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mortarini, L., D. Cava, U. Giostra, O. Acevedo, L. Nogueira Martins, P. E. Soares de Oliveira, and D. Anfossi, 2018: Observations of submeso motions and intermittent turbulent mixing across a low level jet with a 132-m tower. Quart. J. Roy. Meteor. Soc., 144, 172183, https://doi.org/10.1002/qj.3192.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pahlow, M., M. B. Parlange, and F. Porté-Agel, 2001: On Monin–Obukhov similarity in the stable atmospheric boundary layer. Bound.-Layer Meteor., 99, 225248, https://doi.org/10.1023/A:1018909000098.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pope, S. B., 2000: Turbulent Flows. Cambridge University Press, 771 pp.

    • Crossref
    • Export Citation
  • Poulos, G. S., and Coauthors, 2002: CASES-99: A comprehensive investigation of the stable nocturnal boundary layer. Bull. Amer. Meteor. Soc., 83, 555581, https://doi.org/10.1175/1520-0477(2002)083<0555:CACIOT>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • R Core Team, 2017: R: A language and environment for statistical computing. R Foundation for Statistical Computing, https://www.R-project.org/.

  • Sharan, M., M. Modani, and A. Yadav, 2003: Atmospheric dispersion: An overview of mathematical modeling framework. Proc. Indian Natl. Sci. Acad., 69A, 725744.

    • Search Google Scholar
    • Export Citation
  • Sorbjan, Z., and A. A. Grachev, 2010: An evaluation of the flux–gradient relationship in the stable boundary layer. Bound.-Layer Meteor., 135, 385405, https://doi.org/10.1007/s10546-010-9482-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stull, R. B., 1988: An Introduction to Boundary Layer Meteorology. Kluwer Academic, 666 pp.

    • Crossref
    • Export Citation
  • Sun, J., L. Mahrt, R. M. Banta, and Y. L. Pichugina, 2012: Turbulence regimes and turbulence intermittency in the stable boundary layer during CASES-99. J. Atmos. Sci., 69, 338351, https://doi.org/10.1175/JAS-D-11-082.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van de Wiel, B. J. H., R. Ronda, and H. J. J. Jonker, 2012a: The cessation of continuous turbulence as precursor of the very stable nocturnal boundary layer. J. Atmos. Sci., 69, 30973115, https://doi.org/10.1175/JAS-D-12-064.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van de Wiel, B. J. H., R. Ronda, H. J. J. Jonker, P. Baas, S. Basu, J. M. M. Donda, J. Sun, and A. A. M. Holtslag, 2012b: The minimum wind speed for sustainable turbulence in the nocturnal boundary layer. J. Atmos. Sci., 69, 31163127, https://doi.org/10.1175/JAS-D-12-0107.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vickers, D., and L . Mahrt, 2006: A solution for flux contamination by mesoscale motions with very weak turbulence. Bound.-Layer Meteor., 118, 431447, https://doi.org/10.1007/s10546-005-9003-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zilitinkevich, S. S., T. Elperin, N. Kleeorin, and I. Rogachevskii, 2007: Energy and flux-budget (EFB) turbulence closure model for stably stratified flows. Part I: Steady-state, homogeneous regimes. Bound.-Layer Meteor., 125, 167191, https://doi.org/10.1007/s10546-007-9189-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 374 187 19
PDF Downloads 325 181 14

Horizontal Meandering as a Distinctive Feature of the Stable Boundary Layer

View More View Less
  • 1 Institute of Atmospheric Sciences and Climate, National Research Council, Bologna, Italy
  • | 2 Department of Pure and Applied Sciences (DiSPeA), Università degli Studi di Urbino Carlo Bo, Urbino, Italy
  • | 3 Universidade Federal de Santa Maria, Santa Maria, Brazil
  • | 4 Universidade Federal do Pampa, Alegrete, Brazil
Restricted access

Abstract

Oscillations in the horizontal components of the wind velocity associated with oscillations in air temperature during low–wind speed episodes are ubiquitous in the stable boundary layer and are labeled as wind meandering. The meandering structure is recognizable by a clear negative lobe in the Eulerian autocorrelation functions of the horizontal wind velocity components and of the sonic temperature and by a corresponding peak at low frequency in the velocity components and temperature spectra. These distinctive features are used to isolate meandering occurrences and to study its properties in relation to the classical description of the planetary stable boundary layer. It is shown that the ratio of the variance of the wind velocity vertical component over the variance of the composite of the wind velocity horizontal components splits the frequency distribution of meandering and nonmeandering events and divides the nocturnal boundary layer in two different regimes characterized by different turbulent properties. The data comparison with a turbulence model based on Rotta return to isotropy showed that meandering and nonmeandering cases may have similar dynamics. This suggests that meandering may not be connected to a laminarization of the flow and shows that the Rotta scheme may still describe the energetic transfer between wind velocity components in the very stable boundary layer if the Rotta similarity constant c depends on the flux Richardson number. The data confirm a c value of 2.2 for Rif = 0 compatible with its conventional value. The analysis presented refers to one year of continuous measurements on 10 levels carried out at a coastal site in southeastern Brazil.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JAS-D-18-0280.s1.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Luca Mortarini, l.mortarini@isac.cnr.it

Abstract

Oscillations in the horizontal components of the wind velocity associated with oscillations in air temperature during low–wind speed episodes are ubiquitous in the stable boundary layer and are labeled as wind meandering. The meandering structure is recognizable by a clear negative lobe in the Eulerian autocorrelation functions of the horizontal wind velocity components and of the sonic temperature and by a corresponding peak at low frequency in the velocity components and temperature spectra. These distinctive features are used to isolate meandering occurrences and to study its properties in relation to the classical description of the planetary stable boundary layer. It is shown that the ratio of the variance of the wind velocity vertical component over the variance of the composite of the wind velocity horizontal components splits the frequency distribution of meandering and nonmeandering events and divides the nocturnal boundary layer in two different regimes characterized by different turbulent properties. The data comparison with a turbulence model based on Rotta return to isotropy showed that meandering and nonmeandering cases may have similar dynamics. This suggests that meandering may not be connected to a laminarization of the flow and shows that the Rotta scheme may still describe the energetic transfer between wind velocity components in the very stable boundary layer if the Rotta similarity constant c depends on the flux Richardson number. The data confirm a c value of 2.2 for Rif = 0 compatible with its conventional value. The analysis presented refers to one year of continuous measurements on 10 levels carried out at a coastal site in southeastern Brazil.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JAS-D-18-0280.s1.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Luca Mortarini, l.mortarini@isac.cnr.it

Supplementary Materials

    • Supplemental Materials (PDF 1.40 MB)
Save