• Arakawa, A., and W. H. Schubert, 1974: Interaction of a cumulus cloud ensemble with the large-scale environment, part I. J. Atmos. Sci., 31, 674701, https://doi.org/10.1175/1520-0469(1974)031<0674:IOACCE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arakawa, A., and V. R. Lamb, 1977: Computational design of the basic dynamical processes of the UCLA general circulation model. Methods in Computational Physics: Advances in Research and Applications, Vol. 17, 173–265, https://doi.org/10.1016/B978-0-12-460817-7.50009-4.

    • Crossref
    • Export Citation
  • Asai, T., and A. Kasahara, 1967: A theoretical study of the compensating downward motions associated with cumulus clouds. J. Atmos. Sci., 24, 487496, https://doi.org/10.1175/1520-0469(1967)024<0487:ATSOTC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barnes, S. L., 1970: Some aspects of a severe, right-moving thunderstorm deduced from mesonetwork rawinsonde observations. J. Atmos. Sci., 27, 634648, https://doi.org/10.1175/1520-0469(1970)027<0634:SAOASR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Byers, H. R., and R. R. Braham, 1949: The Thunderstorm. U.S. Weather Bureau Rep., 287 pp.

  • Caniaux, G., J. P. Lafore, and J. L. Redelsperger, 1995: A numerical study on the stratiform region of a fast moving squall line. Part II: Relationship between mass, pressure, and momentum fields. J. Atmos. Sci., 52, 331352, https://doi.org/10.1175/1520-0469(1995)052<0331:ANSOTS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Couvreux, F., C. Rio, F. Guichard, M. Lothon, G. Canut, D. Bouniol, and A. Gounou, 2012: Initiation of daytime local convection in a semi-arid region analyzed with large-eddy simulations and AMMA observations. Quart. J. Roy. Meteor. Soc., 138, 5671, https://doi.org/10.1002/qj.903.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Couvreux, F., and Coauthors, 2015: Representation of daytime moist convection over the semi-arid tropics by parametrizations used in climate and meteorological models. Quart. J. Roy. Meteor. Soc., 141, 22202236, https://doi.org/10.1002/qj.2517.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davies-Jones, R., 1974: Discussion of measurements inside high-speed thunderstorm updrafts. J. Appl. Meteor., 13, 710717, https://doi.org/10.1175/1520-0450(1974)013<0710:DOMIHS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davies-Jones, R., 2003: An expression for effective buoyancy in surroundings with horizontal density gradients. J. Atmos. Sci., 60, 29222925, https://doi.org/10.1175/1520-0469(2003)060<2922:AEFEBI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davies-Jones, R., and J. H. Henderson, 1975: Updraft properties deduced statistically from rawin soundings. Pure Appl. Geophys., 113, 787801, https://doi.org/10.1007/BF01592959.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de Roode, S. R., A. P. Siebesma, H. J. J. Jonker, and Y. de Voogd, 2012: Parameterization of the vertical velocity equation for shallow cumulus clouds. Mon. Wea. Rev., 140, 24242436, https://doi.org/10.1175/MWR-D-11-00277.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fujita, T., 1955: Results of detailed synoptic studies of squall lines. Tellus, 7A, 405436, https://doi.org/10.3402/TELLUSA.V7i4.8920.

    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., 2001: Coupling cloud processes with the large-scale dynamics using the cloud-resolving convection parameterization (CRCP). J. Atmos. Sci., 58, 978997, https://doi.org/10.1175/1520-0469(2001)058<0978:CCPWTL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gueremy, J.-F., 2011: A continuous buoyancy based convection scheme: One and three dimensional validation. Tellus, 63A, 687706, https://doi.org/10.1111/j.1600-0870.2011.00521.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hernandez-Deckers, D., and S. C. Sherwood, 2016: A numerical study of cumulus thermals. J. Atmos. Sci., 73, 41174136, https://doi.org/10.1175/JAS-D-15-0385.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holton, J. R., 1973: A one-dimensional cumulus model including pressure perturbations. Mon. Wea. Rev., 101, 201205, https://doi.org/10.1175/1520-0493(1973)101<0201:AOCMIP>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khairoutdinov, M., and D. Randall, 2001: A cloud resolving model as a cloud parameterization in the NCAR Community Climate System Model: Preliminary results. Geophys. Res. Lett., 28, 36173620, https://doi.org/10.1029/2001GL013552.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lafore, J.-P., and M. W. Moncrieff, 1989: A numerical investigation of the organization and interaction of the convective and stratiform regions of tropical squall lines. J. Atmos. Sci., 46, 521544, https://doi.org/10.1175/1520-0469(1989)046<0521:ANIOTO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leger, J., 2018: Un nouveau modèle d’ascendance convective pennant en compte explicitement le terme de pression non-hydrostatique. Thèse doctorat, l’Université Paul Sabatier, 255 pp.

  • LeMone, M. A., L. F. Tarleton, and G. M. Barnes, 1988: Perturbation pressure at the base of cumulus clouds in low shear. Mon. Wea. Rev., 116, 20622068, https://doi.org/10.1175/1520-0493(1988)116<2062:PPATBO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lothon, M., B. Campistron, M. Chong, F. Couvreux, F. Guichard, C. Rio, and E. Williams, 2011: Life cycle of a mesoscale circular gust front observed by a C-band radar in West Africa. Mon. Wea. Rev., 139, 13701388, https://doi.org/10.1175/2010MWR3480.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mapes, B. E., 1993: Gregarious tropical convection. J. Atmos. Sci., 50, 20262037, https://doi.org/10.1175/1520-0469(1993)050<2026:GTC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marwitz, J. D., 1973: Trajectories within the weak echo regions of hailstorms. J. Appl. Meteor., 12, 11741182, https://doi.org/10.1175/1520-0450(1973)012<1174:TWTWER>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morrison, H., 2016a: Impacts of updraft size and dimensionality on the perturbation pressure and vertical velocity in cumulus convection. Part I: Simple, generalized analytic solutions. J. Atmos. Sci., 73, 14411454, https://doi.org/10.1175/JAS-D-15-0040.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morrison, H., 2016b: Impacts of updraft size and dimensionality on the perturbation pressure and vertical velocity in cumulus convection. Part II: Comparison of theoretical and numerical solutions and dully dynamical simulations. J. Atmos. Sci., 73, 14551480, https://doi.org/10.1175/JAS-D-15-0041.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morrison, H., 2017: An analytic description of the structure and evolution of growing deep cumulus updrafts. J. Atmos. Sci., 74, 809834, https://doi.org/10.1175/JAS-D-16-0234.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morrison, H., and J. M. Peters, 2018: Theoretical expressions for the ascent rate of moist deep convective thermals. J. Atmos. Sci., 75, 16991719, https://doi.org/10.1175/JAS-D-17-0295.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ogura, Y., and T. Takahashi, 1971: Numerical simulation of the life cycle of a thunderstorm cell. Mon. Wea. Rev., 99, 895911, https://doi.org/10.1175/1520-0493(1971)099<0895:NSOTLC>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peters, J. M., 2016: The impact of effective buoyancy and dynamic pressure forcing on vertical velocities within two-dimensional updrafts. J. Atmos. Sci., 73, 45314551, https://doi.org/10.1175/JAS-D-16-0016.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Romps, D. M., and A. B. Charn, 2015: Sticky thermals: Evidence for a dominant balance between buoyancy and drag in cloud updrafts. J. Atmos. Sci., 72, 28902901, https://doi.org/10.1175/JAS-D-15-0042.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rotunno, R., and J. B. Klemp, 1982: The influence of the shear induced pressure gradient on thunderstorm motion. Mon. Wea. Rev., 110, 136151, https://doi.org/10.1175/1520-0493(1982)110<0136:TIOTSI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schlesinger, R. E., 1978: A three-dimensional numerical model of an isolated thunderstorm: Part I. Comparative experiments for variable ambient wind shear. J. Atmos. Sci., 35, 690713, https://doi.org/10.1175/1520-0469(1978)035<0690:ATDNMO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sherwood, S. C., D. Hernandez-Deckers, M. Colin, and F. Robinson, 2013: Slippery thermals and the cumulus entrainment paradox. J. Atmos. Sci., 70, 24262442, https://doi.org/10.1175/JAS-D-12-0220.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Siebesma, A. P., and J. W. M. Cuijpers, 1995: Evaluation of parametric assumptions for shallow cumulus convection. J. Atmos. Sci., 52, 650666, https://doi.org/10.1175/1520-0469(1995)052<0650:EOPAFS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simpson, J., and V. Wiggert, 1969: Models of precipitating cumulus towers. Mon. Wea. Rev., 97, 471489, https://doi.org/10.1175/1520-0493(1969)097<0471:MOPCT>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Soong, S.-T., and Y. Ogura, 1973: A comparison between axisymmetric and slab-symmetric cumulus cloud models. J. Atmos. Sci., 30, 879893, https://doi.org/10.1175/1520-0469(1973)030<0879:ACBAAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun J., P. A. Ariya, H. G. Leighton, and M. K. Yau, 2012: Modeling study of ice formation in warm-based precipitating shallow cumulus clouds. J. Atmos. Sci., 69, 33153335, https://doi.org/10.1175/JAS-D-11-0344.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., and J. B. Klemp, 1982: The dependence of numerically simulated convective storms on vertical wind shear and buoyancy. Mon. Wea. Rev., 110, 504520, https://doi.org/10.1175/1520-0493(1982)110<0504:TDONSC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., and J. B. Klemp, 1984: The structure and classification of numerically simulated convective storms in directionally varying wind shears. Mon. Wea. Rev., 112, 24792498, https://doi.org/10.1175/1520-0493(1984)112<2479:TSACON>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilhelmson, R., 1974: The life cycle of a thunderstorm in three dimensions. J. Atmos. Sci., 31, 16291651, https://doi.org/10.1175/1520-0469(1974)031<1629:TLCOAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yau, M. K., 1979: Perturbation pressure and cumulus convection. J. Atmos. Sci., 36, 690694, https://doi.org/10.1175/1520-0469(1979)036<0690:PPACC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yau, M. K., 1980: A two-cylinder model of cumulus cells and its application in computing cumulus transports. J. Atmos. Sci., 37, 24702485, https://doi.org/10.1175/1520-0469(1980)037<2470:ATCMOC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 178 90 5
PDF Downloads 150 85 2

A Simple Model of Convective Drafts Accounting for the Perturbation Pressure Term

View More View Less
  • 1 CNRM, Université de Toulouse, Météo-France, CNRS, Toulouse, France
Restricted access

Abstract

A simple anelastic two-column model of convective updraft accounting explicitly for the perturbation pressure term is developed. There is no vertical wind shear in the environment, and two geometries (slab or axial) are possible. A shape factor is introduced to account for transport by a nonuniform horizontal profile of the vertical velocity in the updraft and its environment. The perturbation buoyancy profile being prescribed, three parameters must be prescribed: depth and aspect ratio of the updraft and the total cell size. The model is tested for idealized buoyancy profiles and evaluated against a large-eddy simulation of daytime development of deep convection. The model behavior agrees with our understanding of the perturbation pressure within clouds. The simulated updraft quickly responds to the buoyancy field (~5 min), shorter than the convection time scale, so that a steady model could be developed. Below the updraft core, a downward pressure gradient is simulated allowing the updraft to overcome a barrier of convective inhibition. This model is designed to be implemented in a convection scheme to replace classical drag formulations of the updraft model.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: J.-M. Piriou, jean-marcel.piriou@meteo.fr

Abstract

A simple anelastic two-column model of convective updraft accounting explicitly for the perturbation pressure term is developed. There is no vertical wind shear in the environment, and two geometries (slab or axial) are possible. A shape factor is introduced to account for transport by a nonuniform horizontal profile of the vertical velocity in the updraft and its environment. The perturbation buoyancy profile being prescribed, three parameters must be prescribed: depth and aspect ratio of the updraft and the total cell size. The model is tested for idealized buoyancy profiles and evaluated against a large-eddy simulation of daytime development of deep convection. The model behavior agrees with our understanding of the perturbation pressure within clouds. The simulated updraft quickly responds to the buoyancy field (~5 min), shorter than the convection time scale, so that a steady model could be developed. Below the updraft core, a downward pressure gradient is simulated allowing the updraft to overcome a barrier of convective inhibition. This model is designed to be implemented in a convection scheme to replace classical drag formulations of the updraft model.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: J.-M. Piriou, jean-marcel.piriou@meteo.fr
Save