• Arai, M., and H. Mukougawa, 2002: On the effectiveness of the eddy straining mechanism for the maintenance of blocking flows. J. Meteor. Soc. Japan, 80, 10891102, https://doi.org/10.2151/jmsj.80.1089.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barnston, A. G., and R. E. Livezey, 1987: Classification, seasonality and persistence of low-frequency atmospheric circulation patterns. Mon. Wea. Rev., 115, 10931126, https://doi.org/10.1175/1520-0493(1987)115<1083:CSAPOL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barriopedro, D., R. García-Herrera, A. R. Lupo, and E. Hernández, 2006: A climatology of Northern Hemisphere blocking. J. Climate, 19, 10421063, https://doi.org/10.1175/JCLI3678.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barriopedro, D., R. García-Herrera, and R. M. Trigo, 2010: Application of blocking diagnosis methods to general circulation models. Part I: A novel detection scheme. Climate Dyn., 35, 13731391, https://doi.org/10.1007/s00382-010-0767-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berner, J., 2005: Linking nonlinearity and non-Gaussianity of planetary wave behavior by the Fokker–Planck equation. J. Atmos. Sci., 62, 20982117, https://doi.org/10.1175/JAS3468.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Colucci, S. J., 1987: Comparative diagnosis of blocking versus nonblocking planetary scale circulation changes during synoptic-scale cyclogenesis. J. Atmos. Sci., 44, 124139, https://doi.org/10.1175/1520-0469(1987)044<0124:CDOBVN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Colucci, S. J., 2001: Planetary-scale preconditioning for the onset of blocking. J. Atmos. Sci., 58, 933942, https://doi.org/10.1175/1520-0469(2001)058<0933:PSPFTO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • D’Andrea, F., 2002: Extratropical low-frequency variability as a low-dimensional problem II: Stationarity and stability of large-scale equilibria. Quart. J. Roy. Meteor. Soc., 128, 10591073, https://doi.org/10.1256/003590002320373201.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • D’Andrea, F., and R. Vautard, 2001: Extratropical low-frequency variability as a low-dimensional problem I: A simplified model. Quart. J. Roy. Meteor. Soc., 127, 13571374, https://doi.org/10.1002/qj.49712757413.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davini, P., C. Cagnazzo, S. Gualdi, and A. Navarra, 2012: Bidimensional diagnostics, variability, and trends of Northern Hemisphere blocking. J. Climate, 25, 64966509, https://doi.org/10.1175/JCLI-D-12-00032.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Diao, Y., L. Jianping, and D. Luo, 2006: A new blocking index and its application: Blocking action in the Northern Hemisphere. J. Climate, 19, 48194839, https://doi.org/10.1175/JCLI3886.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dole, R. M., and N. D. Gordon, 1983: Persistent anomalies of the extratropical Northern Hemisphere wintertime circulation models in the period 1979–1988. Climate Dyn., 14, 385407.

    • Search Google Scholar
    • Export Citation
  • Dunn-Sigouin, E., and S.-W. Son, 2013: Evaluation of Northern Hemisphere blocking climatology in the Global Environment Multiscale Model. Mon. Wea. Rev., 141, 707727, https://doi.org/10.1175/MWR-D-12-00134.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Egger, J., W. Metz, and G. Müller, 1986: Forcing of planetary-scale blocking anticyclones by synoptic-scale eddies. Advances in Geophysics, Vol. 29, Academic Press, 183–198, https://doi.org/10.1016/S0065-2687(08)60039-4.

    • Crossref
    • Export Citation
  • Franzke, C., and A. J. Majda, 2006: Low-order stochastic mode reduction for a prototype atmospheric GCM. J. Atmos. Sci., 63, 457479, https://doi.org/10.1175/JAS3633.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Franzke, C., A. J. Majda, and E. Vanden-Eijnden, 2005: Low-order stochastic mode reduction for a realistic barotropic model climate. J. Atmos. Sci., 62, 17221745, https://doi.org/10.1175/JAS3438.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haines, K., and J. Marshall, 1987: Eddy-forced coherent structures as a prototype of atmospheric blocking. Quart. J. Roy. Meteor. Soc., 113, 681704, https://doi.org/10.1002/qj.49711347613.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hirose, M., and J. E. Kutzbach, 1969: An alternate method for eigenvector computations. J. Appl. Meteor., 8, 701–701, https://doi.org/10.1175/1520-0450(1969)008<0701:AAMFEC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holopainen, E., and C. Fortelius, 1987: High-frequency transient eddies and blocking. J. Atmos. Sci., 44, 16321645, https://doi.org/10.1175/1520-0469(1987)044<1632:HFTEAB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Illari, L., 1984: A diagnostic study of the potential vorticity in a warm blocking anticyclone. J. Atmos. Sci., 41, 35183526, https://doi.org/10.1175/1520-0469(1984)041<3518:ADSOTP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Inatsu, M., 2009: The neighbor enclosed area tracking algorithm for extratropical wintertime cyclones. Atmos. Sci. Lett., 10, 267272, https://doi.org/10.1002/ASL.238.

    • Search Google Scholar
    • Export Citation
  • Inatsu, M., N. Nakano, and H. Mukougawa, 2013: Dynamics and practical predictability of extratropical wintertime low-frequency variability in a low-dimensional system. J. Atmos. Sci., 70, 939952, https://doi.org/10.1175/JAS-D-12-048.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ji, L., and S. Tibaldi, 1983: Numerical simulations of a case of blocking: The effects of orography and land–sea contrast. Mon. Wea. Rev., 111, 20682086, https://doi.org/10.1175/1520-0493(1983)111<2068:NSOACO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kimoto, M., and M. Ghil, 1993: Multiple flow regimes in the Northern Hemisphere winter. Part I. Methodology and hemispheric regimes. J. Atmos. Sci., 50, 26252643, https://doi.org/10.1175/1520-0469(1993)050<2625:MFRITN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kobayashi, S., and Coauthors, 2015: The JRA-55 Reanalysis: General specifications and basic characteristics. J. Meteor. Soc. Japan, 93, 548, https://doi.org/10.2151/jmsj.2015-001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kravtsov, S., D. Kondrashov, and M. Ghil, 2005: Multilevel regression modeling of nonlinear processes: Derivation and application to climate variability. J. Climate, 18, 44044424, https://doi.org/10.1175/JCLI3544.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luo, D., 2000: Planetary-scale baroclinic envelope Rossby solitons in a two-layer model and their interaction with synoptic-scale eddies. Dyn. Atmos. Oceans, 32, 2774, https://doi.org/10.1016/S0377-0265(99)00018-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luo, D., 2005: A barotropic envelop Rossby soliton model for block-eddy interaction. Part I: Effect of topography. J. Atmos. Sci., 62, 521, https://doi.org/10.1175/1186.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luo, D., J. Cha, L. Zhong, and A. Dai, 2014: A nonlinear multiscale interaction model for atmospheric blocking: The eddy-blocking matching mechanism. Quart. J. Roy. Meteor. Soc., 140, 17851808, https://doi.org/10.1002/qj.2337.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lupo, A. R., and P. J. Smith, 1995: Planetary and synoptic-scale interactions during the life cycle of a mid-latitude blocking anticyclone over the North Atlantic. Tellus, 47, 575596, https://doi.org/10.3402/tellusa.v47i5.11549.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maeda, S., C. Kobayashi, K. Takano, and T. Tsuyuki, 2000: Relationship between singular modes of blocking flow and high-frequency eddies. J. Meteor. Soc. Japan, 78, 631646, https://doi.org/10.2151/jmsj1965.78.5_631.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Majda, A. J., I. Timofeyev, and E. Vanden-Eijnden, 2001: A mathematical framework for stochastic climate models. Commun. Pure Appl. Math., 54, 891974, https://doi.org/10.1002/cpa.1014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshall, J., and F. Molteni, 1993: Toward a dynamical understanding of planetary-scale flow regimes. J. Atmos. Sci., 50, 17921818, https://doi.org/10.1175/1520-0469(1993)050<1792:TADUOP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Metz, W., 1986: Transient cyclone-scale vorticity forcing of blocking highs. J. Atmos. Sci., 43, 14671483, https://doi.org/10.1175/1520-0469(1986)043<1467:TCSVFO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Michelangeli, P.-A., and R. Vautard, 1998: The dynamics of Euro-Atlantic blocking onsets. Quart. J. Roy. Meteor. Soc., 124, 10451070, https://doi.org/10.1002/qj.49712454803.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mizuta, R., and Coauthors, 2017: Over 5000 years of ensemble future climate simulations by 60-km global and 20-km regional atmospheric models. Bull. Amer. Meteor. Soc., 98, 13831398, https://doi.org/10.1175/BAMS-D-16-0099.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mullen, S. L., 1986: The local balances of vorticity and heat for blocking anticyclones in a spectral general circulation model. J. Atmos. Sci., 43, 14061441, https://doi.org/10.1175/1520-0469(1986)043<1406:TLBOVA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nakamura, H., and J. M. Wallace, 1993: Synoptic behavior of baroclinic eddies during the blocking onset. Mon. Wea. Rev., 121, 18921903, https://doi.org/10.1175/1520-0493(1993)121<1892:SBOBED>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nakamura, H., M. Nakamura, and J. L. Anderson, 1997: The role of high- and low-frequency dynamics in blocking formation. Mon. Wea. Rev., 125, 20742093, https://doi.org/10.1175/1520-0493(1997)125<2074:TROHAL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Newman, M., P. D. Sardeshmukh, and C. Penland, 1997: Stochastic forcing of the wintertime extratropical flow. J. Atmos. Sci., 54, 435455, https://doi.org/10.1175/1520-0469(1997)054<0435:SFOTWE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pelly, J. L., and B. J. Hoskins, 2003: A new perspective on blocking. J. Atmos. Sci., 60, 743755, https://doi.org/10.1175/1520-0469(2003)060<0743:ANPOB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Penland, C., and M. Ghil, 1993: Forecasting Northern Hemisphere 700-mb geopotential height anomalies using empirical normal modes. Mon. Wea. Rev., 121, 23552372, https://doi.org/10.1175/1520-0493(1993)121<2355:FNHMGH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schwierz, C., M. Croci-Maspoli, and H. C. Davies, 2004: Perspicacious indicators of atmospheric blocking. Geophys. Res. Lett., 31, L06125, https://doi.org/10.1029/2003GL019341.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Selten, F. M., 1997: Baroclinic empirical orthogonal functions as basis functions in an atmospheric model. J. Atmos. Sci., 54, 21002114, https://doi.org/10.1175/1520-0469(1997)054<2099:BEOFAB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shutts, G. J., 1983: The propagation of eddies in diffluent jetstreams: Eddy vorticity forcing of ‘blocking’ flow fields. Quart. J. Roy. Meteor. Soc., 109, 737761, https://doi.org/10.1002/QJ.49710946204.

    • Search Google Scholar
    • Export Citation
  • Sura, P., M. Newman, C. Penland, and P. Sardeshmukh, 2005: Multiplicative noise and non-Gaussianity: A paradigm for atmospheric regimes? J. Atmos. Sci., 62, 13911409, https://doi.org/10.1175/JAS3408.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tibaldi, S., and F. Molteni, 1990: On the operational predictability of blocking. Tellus, 42A, 343365, https://doi.org/10.3402/tellusa.v42i3.11882.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tsou, C. H., and P. J. Smith, 1990: The role of synoptic/planetary-scale interactions during the development of a blocking anticyclone. Tellus, 42A, 174193, https://doi.org/10.3402/tellusa.v42i1.11869.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., and D. S. Gutzler, 1981: Teleconnections in the geopotential height field during the Northern Hemisphere winter. Mon. Wea. Rev., 109, 784812, https://doi.org/10.1175/1520-0493(1981)109<0784:TITGHF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Winkler, C. R., M. Newman, and P. D. Sardeshmukh, 2001: A linear model of wintertime low-frequency variability. Part I: Formulation and forecast skill. J. Climate, 14, 44744494, https://doi.org/10.1175/1520-0442(2001)014<4474:ALMOWL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Woollings, T., and Coauthors, 2018: Blocking and its response to climate change. Curr. Climate Change Rep., 4, 287300, https://doi.org/10.1007/s40641-018-0108-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yamazaki, A., and H. Itoh, 2013: Vortex–vortex interactions for the maintenance of blocking. Part I: The selective absorption mechanism and a case study. J. Atmos. Sci., 70, 725742, https://doi.org/10.1175/JAS-D-11-0295.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Y., and I. M. Held, 1999: A linear stochastic model of a GCM’s midlatitude storm tracks. J. Atmos. Sci., 56, 34163435, https://doi.org/10.1175/1520-0469(1999)056<3416:ALSMOA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 184 88 6
PDF Downloads 157 73 13

Mode-Decomposed Equation Diagnosis for Atmospheric Blocking Development

View More View Less
  • 1 Japan Meteorological Agency, Tokyo, Japan
  • | 2 Faculty of Science, and Research Institute for Electronic Science, and Center for Natural Hazards Research, Hokkaido University, Sapporo, Japan
  • | 3 Institute for Liberal Arts and Sciences, Kyoto University, Kyoto, Japan
  • | 4 Graduate School of Science, Hokkaido University, Sapporo, Japan
Restricted access

Abstract

This paper proposes a new method to identify atmospheric blocking development without the time filtering used in previous studies. A mode-decomposed vorticity equation is formulated from the principal components (PCs) of 500-hPa geopotential height by applying a new idea; the orthonormality of PCs allows any variable to be decomposed into a projection corresponding to the PCs. To test this, sectorial blocking episodes in Northern Hemisphere winter were identified by Barriopedro’s method. A blocking index was defined for each longitudinal range as the linear combination of the 10 largest PCs by means of the composite for the blocking episodes. Blocking development was diagnosed, in terms of the low modes of PC1–PC10 and the high modes of PC11–PC50. The results suggest that the intensification of blocking over the North Pacific and Eurasia is associated with nonlinear interaction among high modes, whereas the intensification (decay) of North Atlantic blocks is related mainly to enhanced nonlinear interaction among low-frequency (high-frequency) eddies. This main result is insensitive to the choice of definition for blocks and the choice of the mode separation boundary.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Masaru Inatsu, inaz@sci.hokudai.ac.jp

Abstract

This paper proposes a new method to identify atmospheric blocking development without the time filtering used in previous studies. A mode-decomposed vorticity equation is formulated from the principal components (PCs) of 500-hPa geopotential height by applying a new idea; the orthonormality of PCs allows any variable to be decomposed into a projection corresponding to the PCs. To test this, sectorial blocking episodes in Northern Hemisphere winter were identified by Barriopedro’s method. A blocking index was defined for each longitudinal range as the linear combination of the 10 largest PCs by means of the composite for the blocking episodes. Blocking development was diagnosed, in terms of the low modes of PC1–PC10 and the high modes of PC11–PC50. The results suggest that the intensification of blocking over the North Pacific and Eurasia is associated with nonlinear interaction among high modes, whereas the intensification (decay) of North Atlantic blocks is related mainly to enhanced nonlinear interaction among low-frequency (high-frequency) eddies. This main result is insensitive to the choice of definition for blocks and the choice of the mode separation boundary.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Masaru Inatsu, inaz@sci.hokudai.ac.jp
Save