• Alstrøm, P., 1988: Mean-field exponents for self-organized critical phenomena. Phys. Rev., A38, 49054906, https://doi.org/10.1103/PhysRevA.38.4905.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arakawa, A., and V. R. Lamb, 1977: Computational design of the basic dynamical processes of the UCLA General Circulation Model. General Circulation Models of the Atmosphere, J. Chang, Ed., Methods in Computational Physics: Advances in Research and Applications, Vol. 17, Elsevier, 173–265, https://doi.org/10.1016/B978-0-12-460817-7.50009-4.

    • Crossref
    • Export Citation
  • Arnold, N. P., and D. A. Randall, 2015: Global-scale convective aggregation: Implications for the Madden-Julian Oscillation. J. Adv. Model. Earth Syst., 7, 14991518, https://doi.org/10.1002/2015MS000498.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Athreya, K. B., and P. E. Ney, 2011: T. E. Harris and branching processes. Ann. Probab., 39, 429434, https://doi.org/10.1214/10-AOP599.

  • Back, L. E., and C. S. Bretherton, 2006: Geographic variability in the export of moist static energy and vertical motion profiles in the tropical Pacific. Geophys. Res. Lett., 33, L17810, https://doi.org/10.1029/2006GL026672.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bao, J., and S. C. Sherwood, 2019: The role of convective self-aggregation in extreme instantaneous versus daily precipitation. J. Adv. Model. Earth Syst., 11, 1933, https://doi.org/10.1029/2018MS001503.

    • Search Google Scholar
    • Export Citation
  • Bengtsson, L., and H. Körnich, 2016: Impact of a stochastic parametrization of cumulus convection, using cellular automata, in a mesoscale ensemble prediction system. Quart. J. Roy. Meteor. Soc., 142, 11501159, https://doi.org/10.1002/qj.2720.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bengtsson, L., M. Steinheimer, P. Bechtold, and J.-F. Geleyn, 2013: A stochastic parametrization for deep convection using cellular automata. Quart. J. Roy. Meteor. Soc., 139, 15331543, https://doi.org/10.1002/qj.2108.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Betts, A. K., 1986: A new convective adjustment scheme. Part I: Observational and theoretical basis. Quart. J. Roy. Meteor. Soc., 112, 677691, https://doi.org/10.1002/QJ.49711247307.

    • Search Google Scholar
    • Export Citation
  • Betts, A. K., and M. J. Miller, 1986: A new convective adjustment scheme. Part II: Single column tests using gate wave, BOMEX, ATEX and Arctic air-mass data sets. Quart. J. Roy. Meteor. Soc., 112, 693709, https://doi.org/10.1002/QJ.49711247308.

    • Search Google Scholar
    • Export Citation
  • Beucler, T., and T. W. Cronin, 2016: Moisture–radiative cooling instability. J. Adv. Model. Earth Syst., 8, 16201640, https://doi.org/10.1002/2016MS000763.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beucler, T., and T. W. Cronin, 2019: A budget for the size of convective self-aggregation. Quart. J. Roy. Meteor. Soc., 145, 947966, https://doi.org/10.1002/QJ.3468.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bony, S., and Coauthors, 2015: Clouds, circulation and climate sensitivity. Nat. Geosci., 8, 261268, https://doi.org/10.1038/ngeo2398.

  • Bretherton, C. S., and M. F. Khairoutdinov, 2015: Convective self-aggregation feedbacks in near-global cloud-resolving simulations of an aquaplanet. J. Adv. Model. Earth Syst., 7, 17651787, https://doi.org/10.1002/2015MS000499.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., P. N. Blossey, and M. Khairoutdinov, 2005: An energy-balance analysis of deep convective self-aggregation above uniform SST. J. Atmos. Sci., 62, 42734292, https://doi.org/10.1175/JAS3614.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cahalan, R. F., and J. H. Joseph, 1989: Fractal statistics of cloud fields. Mon. Wea. Rev., 117, 261272, https://doi.org/10.1175/1520-0493(1989)117<0261:FSOCF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Charney, J., 1947: The dynamics of long waves in a baroclinic westerly current. J. Atmos. Sci., 4, 136162, https://doi.org/10.1175/1520-0469(1947)004<0136:TDOLWI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chen, S. S., R. A. Houze Jr., and B. E. Mapes, 1996: Multiscale variability of deep convection in relation to large-scale circulation in TOGA COARE. J. Atmos. Sci., 53, 13801409, https://doi.org/10.1175/1520-0469(1996)053<1380:MVODCI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cheng, W.-Y., D. Kim, and A. Rowe, 2018: Objective quantification of convective clustering observed during the AMIE/DYNAMO two-day rain episodes. J. Geophys. Res. Atmos., 123, 10 36110 378, https://doi.org/10.1029/2018JD028497.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chou, C., and J. D. Neelin, 2003: Mechanisms limiting the northward extent of the northern summer monsoons over North America, Asia, and Africa. J. Climate, 16, 406425, https://doi.org/10.1175/1520-0442(2003)016<0406:MLTNEO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chou, C., and J. D. Neelin, 2004: Mechanisms of global warming impacts on regional tropical precipitation. J. Climate, 17, 26882701, https://doi.org/10.1175/1520-0442(2004)017<2688:MOGWIO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chou, C., J. D. Neelin, C.-A. Chen, and J.-Y. Tu, 2009: Evaluating the “rich-get-richer” mechanism in tropical precipitation change under global warming. J. Climate, 22, 19822005, https://doi.org/10.1175/2008JCLI2471.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chou, C., T.-C. Wu, and P.-H. Tan, 2013: Changes in gross moist stability in the tropics under global warming. Climate Dyn., 41, 24812496, https://doi.org/10.1007/s00382-013-1703-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Craig, G. C., and J. M. Mack, 2013: A coarsening model for self-organization of tropical convection. J. Geophys. Res. Atmos., 118, 87618769, https://doi.org/10.1002/JGRD.50674.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ding, B., C. Li, M. Zhang, G. Lu, and F. Ji, 2014: Numerical analysis of percolation cluster size distribution in two-dimensional and three-dimensional lattices. Eur. Phys. J. B, 87, 179, https://doi.org/10.1140/epjb/e2014-40996-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eady, E. T., 1949: Long waves and cyclone waves. Tellus, 1, 3352, https://doi.org/10.3402/tellusa.v1i3.8507.

  • Eckart, C., 1948: An analysis of the stirring and mixing processes in compressible fluids. J. Mar. Res., 7 (3), 265275.

  • Emanuel, K., A. A. Wing, and E. M. Vincent, 2014: Radiative–convective instability. J. Adv. Model. Earth Syst., 6, 7590, https://doi.org/10.1002/2013MS000270.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feng, Z., S. Hagos, A. K. Rowe, C. D. Burleyson, M. N. Martini, and S. P. de Szoeke, 2015: Mechanisms of convective cloud organization by cold pools over tropical warm ocean during the AMIE/DYNAMO field campaign. J. Adv. Model. Earth Syst., 7, 357381, https://doi.org/10.1002/2014MS000384.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fovell, R. G., 2002: Upstream influence of numerically simulated squall-line storms. Quart. J. Roy. Meteor. Soc., 128, 893912, https://doi.org/10.1256/0035900021643737.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fovell, R. G., G. L. Mullendore, and S.-H. Kim, 2006: Discrete propagation in numerically simulated nocturnal squall lines. Mon. Wea. Rev., 134, 37353752, https://doi.org/10.1175/MWR3268.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gardiner, C. W., 2004: Handbook of Stochastic Methods for Physics, Chemistry and the Natural Sciences. 3rd ed. Springer Series in Synergetics, Vol. 13, Springer, 415 pp.

    • Crossref
    • Export Citation
  • Goswami, B., B. Khouider, R. Phani, P. Mukhopadhyay, and A. Majda, 2017: Improved tropical modes of variability in the NCEP Climate Forecast System (version 2) via a stochastic multicloud model. J. Atmos. Sci., 74, 33393366, https://doi.org/10.1175/JAS-D-17-0113.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harris, T. E., 1963: The Theory of Branching Processes. Die Grundlehren der Mathematischen Wissenschaften, Bd. 119, Springer, 230 pp.

  • Held, I. M., and A. Y. Hou, 1980: Nonlinear axially symmetric circulations in a nearly inviscid atmosphere. J. Atmos. Sci., 37, 515533, https://doi.org/10.1175/1520-0469(1980)037<0515:NASCIA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Held, I. M., and B. J. Soden, 2006: Robust responses of the hydrological cycle to global warming. J. Climate, 19, 56865699, https://doi.org/10.1175/JCLI3990.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Held, I. M., and M. Zhao, 2008: Horizontally homogeneous rotating radiative–convective equilibria at GCM resolution. J. Atmos. Sci., 65, 20032013, https://doi.org/10.1175/2007JAS2604.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hottovy, S., and S. N. Stechmann, 2015: A spatiotemporal stochastic model for tropical precipitation and water vapor dynamics. J. Atmos. Sci., 72, 47214738, https://doi.org/10.1175/JAS-D-15-0119.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., 1982: Cloud clusters and large-scale vertical motions in the tropics. J. Meteor. Soc. Japan, 60, 396410, https://doi.org/10.2151/JMSJ1965.60.1_396.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., 1997: Stratiform precipitation in regions of convection: A meteorological paradox? Bull. Amer. Meteor. Soc., 78, 21792196, https://doi.org/10.1175/1520-0477(1997)078<2179:SPIROC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., 2004: Mesoscale convective systems. Rev. Geophys., 42, RG4003, https://doi.org/10.1029/2004RG000150.

  • Huffman, G. J., and Coauthors, 2007: The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeor., 8, 3855, https://doi.org/10.1175/JHM560.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Inoue, K., and L. E. Back, 2015: Gross moist stability assessment during TOGA COARE: Various interpretations of gross moist stability. J. Atmos. Sci., 72, 41484166, https://doi.org/10.1175/JAS-D-15-0092.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jeevanjee, N., and D. M. Romps, 2013: Convective self-aggregation, cold pools, and domain size. Geophys. Res. Lett., 40, 994998, https://doi.org/10.1002/grl.50204.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, R. H., 1984: Partitioning tropical heat and moisture budgets into cumulus and mesoscale components: Implications for cumulus parameterization. Mon. Wea. Rev., 112, 15901601, https://doi.org/10.1175/1520-0493(1984)112<1590:PTHAMB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kendall, D. G., 1966: Branching processes since 1873. J. London Math. Soc., s1-41, 385406, https://doi.org/10.1112/JLMS/S1-41.1.385.

  • Khouider, B., 2014: A coarse grained stochastic multi-type particle interacting model for tropical convection: Nearest neighbour interactions. Commun. Math. Sci., 12, 13791407, https://doi.org/10.4310/CMS.2014.v12.n8.a1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khouider, B., J. Biello, and A. J. Majda, 2010: A stochastic multicloud model for tropical convection. Commun. Math. Sci., 8, 187216, https://doi.org/10.4310/CMS.2010.v8.n1.a10.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klein, S. A., and A. Hall, 2015: Emergent constraints for cloud feedbacks. Curr. Climate Change Rep., 1, 276287, https://doi.org/10.1007/s40641-015-0027-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuang, Z., 2012: Weakly forced mock Walker cells. J. Atmos. Sci., 69, 27592786, https://doi.org/10.1175/JAS-D-11-0307.1.

  • Lane, T. P., and F. Zhang, 2011: Coupling between gravity waves and tropical convection at mesoscales. J. Atmos. Sci., 68, 25822598, https://doi.org/10.1175/2011JAS3577.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, Z., K. Bodová, and C. R. Doering, 2010: Models and measures of mixing and effective diffusion. arXiv, https://arxiv.org/abs/1011.1320.

  • López, R. E., 1978: Internal structure and development processes of c-scale aggregates of cumulus clouds. Mon. Wea. Rev., 106, 14881494, https://doi.org/10.1175/1520-0493(1978)106<1488:ISADPO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Machado, L. A. T., W. B. Rossow, R. L. Guedes, and A. W. Walker, 1998: Life cycle variations of mesoscale convective systems over the Americas. Mon. Wea. Rev., 126, 16301654, https://doi.org/10.1175/1520-0493(1998)126<1630:LCVOMC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Majda, A. J., and M. G. Shefter, 2001: Models for stratiform instability and convectively coupled waves. J. Atmos. Sci., 58, 15671584, https://doi.org/10.1175/1520-0469(2001)058<1567:MFSIAC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Majda, A. J., B. Khouider, and Y. Frenkel, 2015: Effects of rotation and mid-troposphere moisture on organized convection and convectively coupled gravity waves. Climate Dyn., 44, 937960, https://doi.org/10.1007/s00382-014-2222-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mapes, B. E., 1993: Gregarious tropical convection. J. Atmos. Sci., 50, 20262037, https://doi.org/10.1175/1520-0469(1993)050<2026:GTC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mapes, B. E., 2000: Convective inhibition, subgrid-scale triggering energy, and stratiform instability in a toy tropical wave model. J. Atmos. Sci., 57, 15151535, https://doi.org/10.1175/1520-0469(2000)057<1515:CISSTE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mapes, B. E., and R. A. Houze, 1995: Diabatic divergence profiles in western Pacific mesoscale convective systems. J. Atmos. Sci., 52, 18071828, https://doi.org/10.1175/1520-0469(1995)052<1807:DDPIWP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mapes, B. E., and R. Neale, 2011: Parameterizing convective organization to escape the entrainment dilemma. J. Adv. Model. Earth Syst., 3, M06004, https://doi.org/10.1029/2011MS000042.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martinez-Villalobos, C., and J. D. Neelin, 2018: Shifts in precipitation accumulation extremes during the warm season over the United States. Geophys. Res. Lett., 45, 85868595, https://doi.org/10.1029/2018GL078465.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matsuno, T., 1966: Quasi-geostrophic motions in the equatorial area. J. Meteor. Soc. Japan, 44, 2543, https://doi.org/10.2151/JMSJ1965.44.1_25.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Merlis, T. M., W. Zhou, I. M. Held, and M. Zhao, 2016: Surface temperature dependence of tropical cyclone-permitting simulations in a spherical model with uniform thermal forcing. Geophys. Res. Lett., 43, 28592865, https://doi.org/10.1002/2016GL067730.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mohr, K. I., and E. J. Zipser, 1996: Mesoscale convective systems defined by their 85-GHz ice scattering signature: Size and intensity comparison over tropical oceans and continents. Mon. Wea. Rev., 124, 24172437, https://doi.org/10.1175/1520-0493(1996)124<2417:MCSDBT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moncrieff, M. W., 1992: Organized convective systems: Archetypal dynamical models, mass and momentum flux theory, and parametrization. Quart. J. Roy. Meteor. Soc., 118, 819850, https://doi.org/10.1002/qj.49711850703.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Muller, C. J., and I. M. Held, 2012: Detailed investigation of the self-aggregation of convection in cloud-resolving simulations. J. Atmos. Sci., 69, 25512565, https://doi.org/10.1175/JAS-D-11-0257.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Muller, C. J., and S. Bony, 2015: What favors convective aggregation and why? Geophys. Res. Lett., 42, 56265634, https://doi.org/10.1002/2015GL064260.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neelin, J. D., and I. M. Held, 1987: Modeling tropical convergence based on the moist static energy budget. Mon. Wea. Rev., 115, 312, https://doi.org/10.1175/1520-0493(1987)115<0003:MTCBOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neelin, J. D., and N. Zeng, 2000: A quasi-equilibrium tropical circulation model––Formulation. J. Atmos. Sci., 57, 17411766, https://doi.org/10.1175/1520-0469(2000)057<1741:AQETCM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neelin, J. D., O. Peters, and K. Hales, 2009: The transition to strong convection. J. Atmos. Sci., 66, 23672384, https://doi.org/10.1175/2009JAS2962.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neelin, J. D., S. Sahany, S. N. Stechmann, and D. N. Bernstein, 2017: Global warming precipitation accumulation increases above the current-climate cutoff scale. Proc. Natl. Acad. Sci. USA, 114, 12581263, https://doi.org/10.1073/pnas.1615333114.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neggers, R. A. J., H. J. J. Jonker, and A. P. Siebesma, 2003: Size statistics of cumulus cloud populations in large-eddy simulations. J. Atmos. Sci., 60, 10601074, https://doi.org/10.1175/1520-0469(2003)60<1060:SSOCCP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nolan, D. S., E. D. Rappin, and K. A. Emanuel, 2007: Tropical cyclogenesis sensitivity to environmental parameters in radiative–convective equilibrium. Quart. J. Roy. Meteor. Soc., 133, 20852107, https://doi.org/10.1002/qj.170.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O’Gorman, P. A., 2015: Precipitation extremes under climate change. Curr. Climate Change Rep., 1, 4959, https://doi.org/10.1007/s40641-015-0009-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pendergrass, A. G., K. A. Reed, and B. Medeiros, 2016: The link between extreme precipitation and convective organization in a warming climate: Global radiative–convective equilibrium simulations. Geophys. Res. Lett., 43, 11 44511 452, https://doi.org/10.1002/2016GL071285.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peters, O., J. D. Neelin, and S. W. Nesbitt, 2009: Mesoscale convective systems and critical clusters. J. Atmos. Sci., 66, 29132924, https://doi.org/10.1175/2008JAS2761.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peters, O., A. Deluca, A. Corral, J. D. Neelin, and C. E. Holloway, 2010: Universality of rain event size distributions. J. Stat. Mech.: Theory Exp., 2010, P11030, https://doi.org/10.1088/1742-5468/2010/11/P11030.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peters, O., K. Christensen, and J. D. Neelin, 2012: Rainfall and dragon-kings. Eur. Phys. J. Spec. Top., 205, 147158, https://doi.org/10.1140/epjst/e2012-01567-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pritchard, M. S., and C. S. Bretherton, 2014: Causal evidence that rotational moisture advection is critical to the superparameterized Madden–Julian oscillation. J. Atmos. Sci., 71, 800815, https://doi.org/10.1175/JAS-D-13-0119.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Quinn, K. M., and J. D. Neelin, 2017a: Distributions of tropical precipitation cluster power and their changes under global warming. Part I: Observational baseline and comparison to a high-resolution atmospheric model. J. Climate, 30, 80338044, https://doi.org/10.1175/JCLI-D-16-0683.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Quinn, K. M., and J. D. Neelin, 2017b: Distributions of tropical precipitation cluster power and their changes under global warming. Part II: Long-term time dependence in coupled model intercomparison project phase 5 models. J. Climate, 30, 80458059, https://doi.org/10.1175/JCLI-D-16-0701.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Raymond, D. J., S. L. Sessions, A. H. Sobel, and Z̆. Fuchs, 2009: The mechanics of gross moist stability. J. Adv. Model. Earth Syst., 1, 9, https://doi.org/10.3894/JAMES.2009.1.9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rossow, W. B., A. Mekonnen, C. Pearl, and W. Goncalves, 2013: Tropical precipitation extremes. J. Climate, 26, 14571466, https://doi.org/10.1175/JCLI-D-11-00725.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sahany, S., J. D. Neelin, K. Hales, and R. B. Neale, 2014: Deep convective transition characteristics in the community climate system model and changes under global warming. J. Climate, 27, 92149232, https://doi.org/10.1175/JCLI-D-13-00747.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schumacher, C., and R. A. Houze, 2006: Stratiform precipitation production over sub-Saharan Africa and the tropical east Atlantic as observed by TRMM. Quart. J. Roy. Meteor. Soc., 132, 22352255, https://doi.org/10.1256/qj.05.121.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schumacher, C., R. A. Houze, and I. Kraucunas, 2004: The tropical dynamical response to latent heating estimates derived from the TRMM Precipitation Radar. J. Atmos. Sci., 61, 13411358, https://doi.org/10.1175/1520-0469(2004)061<1341:TTDRTL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schumacher, R. S., and R. H. Johnson, 2005: Organization and environmental properties of extreme-rain-producing mesoscale convective systems. Mon. Wea. Rev., 133, 961976, https://doi.org/10.1175/MWR2899.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shi, X., and C. S. Bretherton, 2014: Large-scale character of an atmosphere in rotating radiative–convective equilibrium. J. Adv. Model. Earth Syst., 6, 616629, https://doi.org/10.1002/2014MS000342.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sobel, A. H., and C. S. Bretherton, 2000: Modeling tropical precipitation in a single column. J. Climate, 13, 43784392, https://doi.org/10.1175/1520-0442(2000)013<4378:MTPIAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sobel, A. H., J. Nilsson, and L. M. Polvani, 2001: The weak temperature gradient approximation and balanced tropical moisture waves. J. Atmos. Sci., 58, 36503665, https://doi.org/10.1175/1520-0469(2001)058<3650:TWTGAA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sornette, D., 2006: Critical Phenomena in Natural Sciences: Chaos, Fractals, Selforganization and Disorder: Concepts and Tools. Springer, 528 pp.

  • Stauffer, D., and A. Aharony, 1992: Introduction to Percolation Theory. 2nd ed. Taylor & Francis, 192 pp.

  • Stechmann, S. N., and J. D. Neelin, 2011: A stochastic model for the transition to strong convection. J. Atmos. Sci., 68, 29552970, https://doi.org/10.1175/JAS-D-11-028.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stechmann, S. N., and J. D. Neelin, 2014: First-passage-time prototypes for precipitation statistics. J. Atmos. Sci., 71, 32693291, https://doi.org/10.1175/JAS-D-13-0268.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tan, J., C. Jakob, and T. P. Lane, 2015a: The consequences of a local approach in statistical models of convection on its large-scale coherence. J. Geophys. Res. Atmos., 120, 931944, https://doi.org/10.1002/2014JD022680.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tan, J., C. Jakob, W. B. Rossow, and G. Tselioudis, 2015b: Increases in tropical rainfall driven by changes in frequency of organized deep convection. Nature, 519, 451454, https://doi.org/10.1038/nature14339.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Teo, C.-K., H.-N. Huynh, T.-Y. Koh, K. K. W. Cheung, B. Legras, L. Y. Chew, and L. Norford, 2017: The universal scaling characteristics of tropical oceanic rain clusters. J. Geophys. Res. Atmos., 122, 55825599, https://doi.org/10.1002/2016JD025921.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tompkins, A. M., 2001: Organization of tropical convection in low vertical wind shears: The role of cold pools. J. Atmos. Sci., 58, 16501672, https://doi.org/10.1175/1520-0469(2001)058<1650:OOTCIL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Torri, G., Z. Kuang, and Y. Tian, 2015: Mechanisms for convection triggering by cold pools. Geophys. Res. Lett., 42, 19431950, https://doi.org/10.1002/2015GL063227.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Traxl, D., N. Boers, A. Rheinwalt, B. Goswami, and J. Kurths, 2016: The size distribution of spatiotemporal extreme rainfall clusters around the globe. Geophys. Res. Lett., 43, 99399947, https://doi.org/10.1002/2016GL070692.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tulich, S. N., and B. E. Mapes, 2008: Multiscale convective wave disturbances in the tropics: Insights from a two-dimensional cloud-resolving model. J. Atmos. Sci., 65, 140155, https://doi.org/10.1175/2007JAS2353.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vere-Jones, D., 1977: Statistical theories of crack propagation. J. Int. Assoc. Math. Geol., 9, 455481, https://doi.org/10.1007/BF02100959.

  • Villermaux, E., 2019: Mixing versus stirring. Annu. Rev. Fluid Mech., 51, 245273, https://doi.org/10.1146/annurev-fluid-010518-040306.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Watson, H. W., and F. Galton, 1875: On the probability of the extinction of families. J. Anthropol. Inst. G. B. Irel., 4, 138144, https://doi.org/10.2307/2841222.

    • Search Google Scholar
    • Export Citation
  • Welander, P., 1955: Studies on the general development of motion in a two-dimensional, ideal fluid. Tellus, 7, 141156, https://doi.org/10.3402/tellusa.v7i2.8797.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wing, A. A., and K. A. Emanuel, 2014: Physical mechanisms controlling self-aggregation of convection in idealized numerical modeling simulations. J. Adv. Model. Earth Syst., 6, 5974, https://doi.org/10.1002/2013MS000269.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wing, A. A., and T. W. Cronin, 2016: Self-aggregation of convection in long channel geometry. Quart. J. Roy. Meteor. Soc., 142, 115, https://doi.org/10.1002/qj.2628.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wing, A. A., K. Emanuel, C. E. Holloway, and C. Muller, 2018: Convective self-aggregation in numerical simulations: A review. Shallow Clouds, Water Vapor, Circulation, and Climate Sensitivity, R. Pincus et al., Eds., Springer, 1–25, https://doi.org/10.1007/978-3-319-77273-8_1.

    • Crossref
    • Export Citation
  • Wood, R., and P. R. Field, 2011: The distribution of cloud horizontal sizes. J. Climate, 24, 48004816, https://doi.org/10.1175/2011JCLI4056.1.

  • Yang, D., 2018: Boundary layer height and buoyancy determine the horizontal scale of convective self-aggregation. J. Atmos. Sci., 75, 469478, https://doi.org/10.1175/JAS-D-17-0150.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yano, J.-I., S. Mulet, and M. Bonazzola, 2009: Tropical large-scale circulations: asymptotically non-divergent? Tellus, 61A, 417427, https://doi.org/10.1111/j.1600-0870.2009.00397.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, J.-Y., C. Chou, and J. D. Neelin, 1998: Estimating the gross moist stability of the tropical atmosphere. J. Atmos. Sci., 55, 13541372, https://doi.org/10.1175/1520-0469(1998)055<1354:ETGMSO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yuan, J., and R. A. Houze, 2010: Global variability of mesoscale convective system anvil structure from a-train satellite data. J. Climate, 23, 58645888, https://doi.org/10.1175/2010JCLI3671.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yuter, S. E., and R. A. Houze Jr., 1998: The natural variability of precipitating clouds over the western Pacific warm pool. Quart. J. Roy. Meteor. Soc., 124, 5399, https://doi.org/10.1002/qj.49712454504.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zeng, N., J. D. Neelin, and C. Chou, 2000: A quasi-equilibrium tropical circulation model—Implementation and simulation. J. Atmos. Sci., 57, 17671796, https://doi.org/10.1175/1520-0469(2000)057<1767:AQETCM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zipser, E. J., 1977: Mesoscale and convective–scale downdrafts as distinct components of squall-line structure. Mon. Wea. Rev., 105, 15681589, https://doi.org/10.1175/1520-0493(1977)105<1568:MACDAD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zuidema, P., G. Torri, C. Muller, and A. Chandra, 2017: A survey of precipitation-induced atmospheric cold pools over oceans and their interactions with the larger-scale environment. Surv. Geophys., 38, 12831305, https://doi.org/10.1007/s10712-017-9447-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 377 202 11
PDF Downloads 235 120 7

Explaining Scales and Statistics of Tropical Precipitation Clusters with a Stochastic Model

View More View Less
  • 1 Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, Los Angeles, California
Restricted access

Abstract

Precipitation clusters are contiguous raining regions characterized by a precipitation threshold, size, and the total rainfall contained within—termed the cluster power. Tropical observations suggest that the probability distributions of both cluster size and power contain a power-law range (with slope ~ −1.5) bounded by a large-event “cutoff.” Events with values beyond the cutoff signify large, powerful clusters and represent extreme events. A two-dimensional stochastic model is introduced to reproduce the observed cluster distributions, including the slope and the cutoff. The model is equipped with coupled moisture and weak temperature gradient (WTG) energy equations, empirically motivated precipitation parameterization, temporally persistent noise, and lateral mixing processes, all of which collectively shape the model cluster distributions. Moisture–radiative feedbacks aid clustering, but excessively strong feedbacks push the model into a self-aggregating regime. The power-law slope is stable in a realistic parameter range. The cutoff is sensitive to multiple model parameters including the stochastic forcing amplitude, the threshold moisture value that triggers precipitation, and the lateral mixing efficiency. Among the candidates for simple analogs of precipitation clustering, percolation models are ruled out as unsatisfactory, but the stochastic branching process proves useful in formulating a neighbor probability metric. This metric measures the average number of nearest neighbors that a precipitating entity can spawn per time interval and captures the cutoff parameter sensitivity for both cluster size and power. The results here suggest that the clustering tendency and the horizontal scale limiting large tropical precipitating systems arise from aggregate effects of multiple moist processes, which are encapsulated in the neighbor probability metric.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JAS-D-18-0368.s1.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Fiaz Ahmed, fiaz@ucla.edu

Abstract

Precipitation clusters are contiguous raining regions characterized by a precipitation threshold, size, and the total rainfall contained within—termed the cluster power. Tropical observations suggest that the probability distributions of both cluster size and power contain a power-law range (with slope ~ −1.5) bounded by a large-event “cutoff.” Events with values beyond the cutoff signify large, powerful clusters and represent extreme events. A two-dimensional stochastic model is introduced to reproduce the observed cluster distributions, including the slope and the cutoff. The model is equipped with coupled moisture and weak temperature gradient (WTG) energy equations, empirically motivated precipitation parameterization, temporally persistent noise, and lateral mixing processes, all of which collectively shape the model cluster distributions. Moisture–radiative feedbacks aid clustering, but excessively strong feedbacks push the model into a self-aggregating regime. The power-law slope is stable in a realistic parameter range. The cutoff is sensitive to multiple model parameters including the stochastic forcing amplitude, the threshold moisture value that triggers precipitation, and the lateral mixing efficiency. Among the candidates for simple analogs of precipitation clustering, percolation models are ruled out as unsatisfactory, but the stochastic branching process proves useful in formulating a neighbor probability metric. This metric measures the average number of nearest neighbors that a precipitating entity can spawn per time interval and captures the cutoff parameter sensitivity for both cluster size and power. The results here suggest that the clustering tendency and the horizontal scale limiting large tropical precipitating systems arise from aggregate effects of multiple moist processes, which are encapsulated in the neighbor probability metric.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JAS-D-18-0368.s1.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Fiaz Ahmed, fiaz@ucla.edu

Supplementary Materials

    • Supplemental Materials (PDF 2.05 MB)
Save