• Bryan, G. H., and R. Rotunno, 2009: Evaluation of an analytical model for the maximum intensity of tropical cyclones. J. Atmos. Sci., 66, 30423060, https://doi.org/10.1175/2009JAS3038.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1986: An air–sea interaction theory for tropical cyclones. Part I: Steady-state maintenance. J. Atmos. Sci., 43, 585604, https://doi.org/10.1175/1520-0469(1986)043<0585:AASITF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1997: Some aspects of hurricane inner-core dynamics and energetics. J. Atmos. Sci., 54, 10141026, https://doi.org/10.1175/1520-0469(1997)054<1014:SAOHIC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 2004: Tropical cyclone energetics and structure. Atmospheric Turbulence and Mesoscale Meteorology: Scientific Research Inspired by Doug Lilly, E. Fedorovich, R. Rotunno, and B. Stevens, Eds., Cambridge University Press, 165–192.

    • Crossref
    • Export Citation
  • Emanuel, K. A., 2012: Self-stratification of tropical cyclone outflow. Part II: Implications for storm intensification. J. Atmos. Sci., 69, 988996, https://doi.org/10.1175/JAS-D-11-0177.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 2017: Will global warming make hurricane forecasting more difficult? Bull. Amer. Meteor. Soc., 98, 495501, https://doi.org/10.1175/BAMS-D-16-0134.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., and R. Rotunno, 2011: Self-stratification of tropical cyclone outflow. Part I: Implications for storm structure. J. Atmos. Sci., 68, 22362249, https://doi.org/10.1175/JAS-D-10-05024.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kilroy, G., and R. K. Smith, 2017: The effects of initial vortex size on tropical cyclogenesis and intensification. Quart. J. Roy. Meteor. Soc., 143, 28322845, https://doi.org/10.1002/qj.3134.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., and R. K. Smith, 2014: Paradigms for tropical cyclone intensification. Aust. Meteor. Oceanogr. Soc. J., 64, 3766.

  • Montgomery, M. T., and R. K. Smith, 2017: Recent developments in the fluid dynamics of tropical cyclones. Annu. Rev. Fluid Mech., 49, 541574, https://doi.org/10.1146/annurev-fluid-010816-060022.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., J. Persing, and R. K. Smith, 2019: On the hypothesized outflow control of tropical cyclone intensification. Quart. J. Roy. Meteor. Soc., 145, 13091322, https://doi.org/10.1002/qj.3479.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ooyama, K. V., 1969: Numerical simulation of the life cycle of tropical cyclones. J. Atmos. Sci., 26, 340, https://doi.org/10.1175/1520-0469(1969)026<0003:NSOTLC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peng, K., R. Rotunno, and G. H. Bryan, 2018: Evaluation of a time-dependent model for the intensification of tropical cyclones. J. Atmos. Sci., 75, 21252138, https://doi.org/10.1175/JAS-D-17-0382.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, R. K., and M. T. Montgomery, 2016: Understanding hurricanes. Weather, 71, 219223, https://doi.org/10.1002/wea.2776.

  • Smith, R. K., M. T. Montgomery, and S. Vogl, 2008: A critique of Emanuel’s hurricane model and potential intensity theory. Quart. J. Roy. Meteor. Soc., 134, 551561, https://doi.org/10.1002/qj.241.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, R. K., M. T. Montgomery, and H. Bui, 2018: Axisymmetric balance dynamics of tropical cyclone intensification and its breakdown revisited. J. Atmos. Sci., 75, 31693189, https://doi.org/10.1175/JAS-D-17-0179.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 294 191 2
PDF Downloads 294 182 1

Toward Understanding the Dynamics of Spinup in Emanuel’s Tropical Cyclone Model

View More View Less
  • 1 Department of Meteorology, Naval Postgraduate School, Monterey, California
  • | 2 Meteorological Institute, Ludwig-Maximilians University of Munich, Munich, Germany
Restricted access

Abstract

We seek to understand the mechanism of vortex spinup in Emanuel’s 2012 axisymmetric theory for tropical cyclone intensification in physical coordinates, starting from first principles. It is noted that, while spinup of the maximum tangential wind must occur at low levels, within or at the top of the friction layer, this spinup is unconstrained by a radial momentum equation in this layer. Instead, the spinup is controlled by a parameterization of turbulent mixing in the upper-tropospheric outflow layer, which, as is shown, determines indirectly the rate of inward movement of the absolute angular momentum surfaces. Nevertheless, the physics of how upper-tropospheric mixing leads to spinup in or at the top of the friction layer are unclear and, as discussed, may be irrelevant to spinup in the model.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Michael T. Montgomery, mtmontgo@nps.edu

Abstract

We seek to understand the mechanism of vortex spinup in Emanuel’s 2012 axisymmetric theory for tropical cyclone intensification in physical coordinates, starting from first principles. It is noted that, while spinup of the maximum tangential wind must occur at low levels, within or at the top of the friction layer, this spinup is unconstrained by a radial momentum equation in this layer. Instead, the spinup is controlled by a parameterization of turbulent mixing in the upper-tropospheric outflow layer, which, as is shown, determines indirectly the rate of inward movement of the absolute angular momentum surfaces. Nevertheless, the physics of how upper-tropospheric mixing leads to spinup in or at the top of the friction layer are unclear and, as discussed, may be irrelevant to spinup in the model.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Michael T. Montgomery, mtmontgo@nps.edu
Save