• Bryan, G. H., 2012: Effects of surface exchange coefficients and turbulence length scales on the intensity and structure of numerically simulated hurricanes. Mon. Wea. Rev., 140, 11251143, https://doi.org/10.1175/MWR-D-11-00231.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., 2013: Comments on ‘Sensitivity of tropical-cyclone models to the surface drag coefficient.’ Quart. J. Roy. Meteor. Soc., 139, 19571960, https://doi.org/10.1002/qj.2066.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., and J. M. Fritsch, 2002: A benchmark simulation for moist nonhydrostatic numerical model. Mon. Wea. Rev., 130, 29172928, https://doi.org/10.1175/1520-0493(2002)130<2917:ABSFMN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., and R. Rotunno, 2009: Evaluation of an analytical model for the maximum intensity of tropical cyclones. J. Atmos. Sci., 66, 30423060, https://doi.org/10.1175/2009JAS3038.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bu, Y. P., R. G. Fovell, and K. L. Corbosiero, 2017: The influences of boundary layer mixing and cloud-radiative forcing on tropical cyclone size. J. Atmos. Sci., 74, 12731292, https://doi.org/10.1175/JAS-D-16-0231.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bui, H. H., R. K. Smith, M. T. Montgomery, and J. Peng, 2009: Balanced and unbalanced aspects of tropical cyclone intensification. Quart. J. Roy. Meteor. Soc., 135, 17151731, https://doi.org/10.1002/qj.502.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deng, L., T. Li, M. Bi, J. Liu, and M. Peng, 2018: Dependence of tropical cyclone development on Coriolis parameter: A theoretical model. Dyn. Atmos. Oceans, 81, 5162, https://doi.org/10.1016/j.dynatmoce.2017.12.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dudhia, J., 1989: Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46, 30773107, https://doi.org/10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dunion, J. P., and C. S. Marron, 2008: A reexamination of the Jordan mean tropical sounding based on awareness of the Saharan air layer: Results from 2002. J. Climate, 21, 52425253, https://doi.org/10.1175/2008JCLI1868.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eliassen, A., 1951: Slow thermally of frictionally controlled meridional circulation in a circular vortex. Astrophys. Nor., 5, 1960.

  • Fudeyasu, H., and Y. Wang, 2011: Balanced contribution to the intensification of a tropical cyclone simulated in TCM4: Outer-core spinup process. J. Atmos. Sci., 68, 430449, https://doi.org/10.1175/2010JAS3523.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heng, J., and Y. Wang, 2016: Nonlinear response of a tropical cyclone vortex to prescribed eyewall heating with and without surface friction in TCM4: Implications for tropical cyclone intensification. J. Atmos. Sci., 73, 13151333, https://doi.org/10.1175/JAS-D-15-0164.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heng, J., Y. Wang, and W. Zhou, 2017: Revisiting the balanced and unbalanced aspects of tropical intensification. J. Atmos. Sci., 74, 25752591, https://doi.org/10.1175/JAS-D-17-0046.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kain, J. S., 2004: The Kain–Fritsch convective parameterization: An update. J. Appl. Meteor., 43, 170181, https://doi.org/10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kieu, C. Q., 2012: An investigation into the contraction of the hurricane radius of maximum wind. Meteor. Atmos. Phys., 115, 4756, https://doi.org/10.1007/s00703-011-0171-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kieu, C. Q., and D.-L. Zhang, 2017: Comments on “Revisiting the relationship between eyewall contraction and intensification.” J. Atmos. Sci., 74, 42654274, https://doi.org/10.1175/JAS-D-17-0011.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kilroy, G., M. T. Montgomery, and R. K. Smith, 2017: The role of boundary-layer friction on tropical cyclogenesis and subsequent intensification. Quart. J. Roy. Meteor. Soc., 143, 25242536, https://doi.org/10.1002/qj.3104.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102, 16 66316 682, https://doi.org/10.1029/97JD00237.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morrison, H., G. Thompson, and V. Tatarskii, 2009: Impact of cloud microphysics on the development of trailing stratiform precipitation in a simulated squall line: Comparison of one- and two-moment scheme. Mon. Wea. Rev., 137, 9911007, https://doi.org/10.1175/2008MWR2556.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nakanishi, M., and H. Niino, 2009: Development of an improved turbulence closure model for the atmospheric boundary layer. J. Meteor. Soc. Japan, 87, 895912, https://doi.org/10.2151/jmsj.87.895.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pendergrass, A. G., and H. E. Willoughby, 2009: Diabatically induced secondary flows in tropical cyclones. Part I: Quasi-steady forcing. Mon. Wea. Rev., 137, 805821, https://doi.org/10.1175/2008MWR2657.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qin, N., D.-L. Zhang, and Y. Li, 2016: A statistical analysis of steady eyewall sizes associated with rapidly intensifying hurricanes. Wea. Forecasting, 31, 737742, https://doi.org/10.1175/WAF-D-16-0016.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qin, N., D.-L. Zhang, W. Miller, and C. Q. Kieu, 2018: On the rapid intensification of Hurricane Wilma (2005). Part IV: Inner-core dynamics during the steady radius of maximum wind stage. Quart. J. Roy. Meteor. Soc., 144, 25082523, https://doi.org/10.1002/qj.3339.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rotunno, R., and G. H. Bryan, 2012: Effects of parameterized diffusion on simulated hurricanes. J. Atmos. Sci., 69, 22842299, https://doi.org/10.1175/JAS-D-11-0204.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schubert, W. H., and J. J. Hack, 1982: Inertial stability and tropical cyclone development. J. Atmos. Sci., 39, 16871697, https://doi.org/10.1175/1520-0469(1982)039<1687:ISATCD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shapiro, L. J., and H. E. Willoughby, 1982: The response of balanced hurricanes to local sources of heat and momentum. J. Atmos. Sci., 39, 378394, https://doi.org/10.1175/1520-0469(1982)039<0378:TROBHT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp., https://doi.org/10.5065/D68S4MVH.

    • Crossref
    • Export Citation
  • Smith, R. K., M. T. Montgomery, and G. L. Thomsen, 2014: Sensitivity of tropical-cyclone models to the surface drag coefficient in different boundary-layer schemes. Quart. J. Roy. Meteor. Soc., 140, 792804, https://doi.org/10.1002/qj.2057.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, R. K., G. Kilroy, and M. T. Montgomery, 2015: Why do model tropical cyclones intensify more rapidly at low latitudes? J. Atmos. Sci., 72, 17831804, https://doi.org/10.1175/JAS-D-14-0044.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stern, D. P., J. L. Vigh, D. S. Nolan, and F. Zhang, 2015: Revisiting the relationship between eyewall contraction and intensification. J. Atmos. Sci., 72, 12831306, https://doi.org/10.1175/JAS-D-14-0261.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stern, D. P., J. L. Vigh, D. S. Nolan, and F. Zhang, 2017: Reply to “Comments on ‘Revisiting the relationship between eyewall contraction and intensification.’” J. Atmos. Sci., 74, 42754286, https://doi.org/10.1175/JAS-D-17-0120.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tang, X., Z. Tan, J. Fang, E. B. Munsell, and F. Zhang, 2019: Impact of the diurnal radiation contrast on the contraction of radius of maximum wind during intensification of Hurricane Edouard (2014). J. Atmos. Sci., 76, 421432, https://doi.org/10.1175/JAS-D-18-0131.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, G., P. R. Field, R. M. Rasmussen, and W. D. Hall, 2008: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: Implementation of a new snow parameterization. Mon. Wea. Rev., 136, 50955115, https://doi.org/10.1175/2008MWR2387.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, H., C. Wu, and Y. Wang, 2016: Secondary eyewall formation in an idealized tropical cyclone simulation: Balanced and unbalanced dynamics. J. Atmos. Sci., 73, 39113930, https://doi.org/10.1175/JAS-D-15-0146.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Y., and J. Xu, 2010: Energy production, frictional dissipation, and maximum intensity of a numerically simulated tropical cyclone. J. Atmos. Sci., 67, 97116, https://doi.org/10.1175/2009JAS3143.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Y., and H. Wang, 2013: The inner-core size increase of Typhoon Megi (2010) during its rapid intensification phase. Trop. Cyclone Res. Rev., 2, 6580, https://doi.org/10.6057/2013TCRR02.01.

    • Search Google Scholar
    • Export Citation
  • Willoughby, H. E., 1990: Temporal changes of the primary circulation in tropical cyclones. J. Atmos. Sci., 47, 242264, https://doi.org/10.1175/1520-0469(1990)047<0242:TCOTPC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Willoughby, H. E., J. A. Clos, and M. G. Shoreibah, 1982: Concentric eye walls, secondary wind maxima, and the evolution of the hurricane vortex. J. Atmos. Sci., 39, 395411, https://doi.org/10.1175/1520-0469(1982)039<0395:CEWSWM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, J., and Y. Wang, 2010a: Sensitivity of tropical cyclone inner-core size and intensity to the radial distribution of surface entropy flux. J. Atmos. Sci., 67, 18311852, https://doi.org/10.1175/2010JAS3387.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, J., and Y. Wang, 2010b: Sensitivity of the simulated tropical cyclone inner-core size to the initial vortex size. Mon. Wea. Rev., 138, 41354157, https://doi.org/10.1175/2010MWR3335.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhu, Z., and P. Zhu, 2014: The role of outer rainband convection in governing the eyewall replacement cycle in numerical simulations of tropical cyclones. J. Geophys. Res., 119, 80498072, https://doi.org/10.1002/2014JD021899.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 411 262 8
PDF Downloads 336 224 3

Revisiting the Dynamics of Eyewall Contraction of Tropical Cyclones

View More View Less
  • 1 Ministry of Education Key Laboratory for Earth System Modeling, Department of Earth System Science, and Joint Center for Global Change Studies, Tsinghua University, Beijing, China, and International Pacific Research Center, and Department of Atmospheric Sciences, School of Ocean and Earth Science and Technology, University of Hawai‘i at Mānoa, Honolulu, Hawaii
  • | 2 International Pacific Research Center, and Department of Atmospheric Sciences, School of Ocean and Earth Science and Technology, University of Hawai‘i at Mānoa, Honolulu, Hawaii, and State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, China Meteorological Administration, Beijing, China
  • | 3 Ministry of Education Key Laboratory for Earth System Modeling, Department of Earth System Science, and Joint Center for Global Change Studies, Tsinghua University, Beijing, China
Restricted access

Abstract

The dynamics of eyewall contraction of tropical cyclones (TCs) has been revisited in this study based on both three-dimensional and axisymmetric simulations and dynamical diagnostics. Because eyewall contraction is closely related to the contraction of the radius of maximum wind (RMW), its dynamics is thus often studied by examining the RMW tendency in previous studies. Recently, Kieu and Stern et al. proposed two different frameworks to diagnose the RMW tendency but had different conclusions. In this study, the two frameworks are evaluated first based on theoretical analysis and idealized numerical simulations. It is shown that the framework of Kieu is a special case of the earlier framework of Willoughby et al. if the directional derivative is applied. An extension of Stern et al.’s approach not only can reproduce but also can predict the RMW tendency. A budget of the azimuthal-mean tangential wind tendency indicates that the contributions by radial and vertical advections to the RMW tendency vary with height. Namely, radial advection dominates the RMW contraction in the lower boundary layer, and vertical advection favors the RMW contraction in the upper boundary layer and lower troposphere. In addition to the curvature, the increase of the radial gradient of horizontal mixing (including the resolved eddy mixing in three dimensions) near the eyewall prohibits eyewall contraction in the lower boundary layer. Besides, the vertical mixing including surface friction also plays an important role in the cessation of eyewall contraction in the lower boundary layer.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Yuqing Wang, yuqing@hawaii.edu

Abstract

The dynamics of eyewall contraction of tropical cyclones (TCs) has been revisited in this study based on both three-dimensional and axisymmetric simulations and dynamical diagnostics. Because eyewall contraction is closely related to the contraction of the radius of maximum wind (RMW), its dynamics is thus often studied by examining the RMW tendency in previous studies. Recently, Kieu and Stern et al. proposed two different frameworks to diagnose the RMW tendency but had different conclusions. In this study, the two frameworks are evaluated first based on theoretical analysis and idealized numerical simulations. It is shown that the framework of Kieu is a special case of the earlier framework of Willoughby et al. if the directional derivative is applied. An extension of Stern et al.’s approach not only can reproduce but also can predict the RMW tendency. A budget of the azimuthal-mean tangential wind tendency indicates that the contributions by radial and vertical advections to the RMW tendency vary with height. Namely, radial advection dominates the RMW contraction in the lower boundary layer, and vertical advection favors the RMW contraction in the upper boundary layer and lower troposphere. In addition to the curvature, the increase of the radial gradient of horizontal mixing (including the resolved eddy mixing in three dimensions) near the eyewall prohibits eyewall contraction in the lower boundary layer. Besides, the vertical mixing including surface friction also plays an important role in the cessation of eyewall contraction in the lower boundary layer.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Yuqing Wang, yuqing@hawaii.edu
Save