The Predictability of Tropical Pacific Decadal Variability: Insights from Attractor Reconstruction

Nandini Ramesh Department of Earth and Environmental Sciences, Columbia University, New York, New York

Search for other papers by Nandini Ramesh in
Current site
Google Scholar
PubMed
Close
and
Mark A. Cane Lamont-Doherty Earth Observatory, Palisades, New York

Search for other papers by Mark A. Cane in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Tropical Pacific decadal variability (TPDV), though not the totality of Pacific decadal variability, has wide-ranging climatic impacts. It is currently unclear whether this phenomenon is predictable. In this study, we reconstruct the attractor of the tropical Pacific system in long, unforced simulations from an intermediate-complexity model, two general circulation models (GCMs), and the observations with the aim of assessing the predictability of TPDV in these systems. We find that in the intermediate-complexity model, positive (high variance, El Niño–like) and negative (low variance, La Niña–like) phases of TPDV emerge as a pair of regime-like states. The observed system bears resemblance to this behavior, as does one GCM, while the other GCM does not display this structure. However, these last three time series are too short to confidently characterize the full distribution of interdecadal variability. The intermediate-complexity model is shown to lie in highly predictable parts of its attractor 37% of the time, during which most transitions between TPDV regimes occur. The similarities between the observations and this system suggest that the tropical Pacific may be somewhat predictable on interdecadal time scales.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Nandini Ramesh, nramesh@ldeo.columbia.edu

Abstract

Tropical Pacific decadal variability (TPDV), though not the totality of Pacific decadal variability, has wide-ranging climatic impacts. It is currently unclear whether this phenomenon is predictable. In this study, we reconstruct the attractor of the tropical Pacific system in long, unforced simulations from an intermediate-complexity model, two general circulation models (GCMs), and the observations with the aim of assessing the predictability of TPDV in these systems. We find that in the intermediate-complexity model, positive (high variance, El Niño–like) and negative (low variance, La Niña–like) phases of TPDV emerge as a pair of regime-like states. The observed system bears resemblance to this behavior, as does one GCM, while the other GCM does not display this structure. However, these last three time series are too short to confidently characterize the full distribution of interdecadal variability. The intermediate-complexity model is shown to lie in highly predictable parts of its attractor 37% of the time, during which most transitions between TPDV regimes occur. The similarities between the observations and this system suggest that the tropical Pacific may be somewhat predictable on interdecadal time scales.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Nandini Ramesh, nramesh@ldeo.columbia.edu
Save
  • Adams, J. B., M. E. Mann, and C. M. Ammann, 2003: Proxy evidence for an El Niño-like response to volcanic forcing. Nature, 426, 274278, https://doi.org/10.1038/nature02101.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • An, S.-I., J.-S. Kug, A. Timmermann, I.-S. Kang, and O. Timm, 2007: The influence of ENSO on the generation of decadal variability in the North Pacific. J. Climate, 20, 667680, https://doi.org/10.1175/JCLI4017.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Atwood, A. R., D. S. Battisti, A. T. Wittenberg, W. H. G. Roberts, and D. J. Vimont, 2017: Characterizing unforced multi-decadal variability of ENSO: A case study with the GFDL CM2.1 coupled GCM. Climate Dyn., 49, 28452862, https://doi.org/10.1007/s00382-016-3477-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barnett, T. P., D. W. Pierce, M. Latif, D. Dommenget, and R. Saravanan, 1999: Interdecadal interactions between the tropics and midlatitudes in the Pacific basin. Geophys. Res. Lett., 26, 615618, https://doi.org/10.1029/1999GL900042.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cane, M. A., S. E. Zebiak, and Y. Xue, 1995: Model studies of the long term behavior of ENSO. Natural Climate Variability on Decade-to-Century Time Scales, D. G. Martinson et al., Eds., National Academy Press, 442–457.

  • Chang, P., L. Ji, H. Li, and M. Flügel, 1996: Chaotic dynamics versus stochastic processes in El Nino-Southern Oscillation in coupled ocean-atmosphere models. Physica D, 98, 301320, https://doi.org/10.1016/0167-2789(96)00116-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, D., and M. A. Cane, 2008: El Niño prediction and predictability. J. Comput. Phys., 227, 36253640, https://doi.org/10.1016/j.jcp.2007.05.014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, X., and J. M. Wallace, 2015: ENSO-like variability: 1900–2013. J. Climate, 28, 96239641, https://doi.org/10.1175/JCLI-D-15-0322.1.

  • Choi, J., S.-I. An, B. Dewitte, W. W. Hsieh, J. Choi, S.-I. An, B. Dewitte, and W. W. Hsieh, 2009: Interactive feedback between the tropical Pacific decadal oscillation and ENSO in a coupled general circulation model. J. Climate, 22, 65976611, https://doi.org/10.1175/2009JCLI2782.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Delworth, T. L., and Coauthors, 2006: GFDL’s CM2 global coupled climate models. Part I: Formulation and simulation characteristics. J. Climate, 19, 643674, https://doi.org/10.1175/JCLI3629.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deyle, E. R. and G. Sugihara, 2011: Generalized theorems for nonlinear state space reconstruction. PLOS ONE, 6, e18295, https://doi.org/10.1371/journal.pone.0018295.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ding, H., R. J. Greatbatch, M. Latif, W. Park, and R. Gerdes, 2013: Hindcast of the 1976/77 and 1998/99 climate shifts in the Pacific. J. Climate, 26, 76507661, https://doi.org/10.1175/JCLI-D-12-00626.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dong, B., R. T. Sutton, and A. A. Scaife, 2006: Multidecadal modulation of El Niño–Southern Oscillation (ENSO) variance by Atlantic Ocean sea surface temperatures. Geophys. Res. Lett., 33, L08705, https://doi.org/10.1029/2006GL025766.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emile-Geay, J., and M. A. Cane, 2009: Pacific decadal variability in the view of linear equatorial wave theory. J. Phys. Oceanogr., 39, 203219, https://doi.org/10.1175/2008JPO3794.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • England, M. H., and Coauthors, 2014: Recent intensification of wind-driven circulation in the Pacific and the ongoing warming hiatus. Nat. Climate Change, 4, 222227, https://doi.org/10.1038/nclimate2106.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Flato, G., and Coauthors, 2013: Evaluation of climate models. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press 741–866.

  • Flügel, M., and P. Chang, 1999: Stochastically induced climate shift of El Niño-Southern Oscillation. Geophys. Res. Lett., 26, 24732476, https://doi.org/10.1029/1999GL900550.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Francis, R. C., S. R. Hare, A. B. Hollowed, and W. S. Wooster, 1998: Effects of interdecadal climate variability on the oceanic ecosystems of the NE Pacific. Fish. Oceanogr., 7, 121, https://doi.org/10.1046/j.1365-2419.1998.00052.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Henley, B. J., J. Gergis, D. J. Karoly, S. Power, J. Kennedy, and C. K. Folland, 2015: A tripole index for the interdecadal Pacific oscillation. Climate Dyn., 45, 30773090, https://doi.org/10.1007/s00382-015-2525-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Herweijer, C., and R. Seager, 2008: The global footprint of persistent extra-tropical drought in the instrumental era. Int. J. Climatol., 28, 17611774, https://doi.org/10.1002/joc.1590.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jin, F.-F., D. Neelin, and M. Ghil, 1994: El Niño on the Devil’s Staircase: Annual subharmonic steps to chaos. Science, 264, 7072, https://doi.org/10.1126/science.264.5155.70.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kang, I. S., H. H. No, and F. Kucharski, 2014: ENSO amplitude modulation associated with the mean SST changes in the tropical central Pacific induced by Atlantic multidecadal oscillation. J. Climate, 27, 79117920, https://doi.org/10.1175/JCLI-D-14-00018.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kaplan, A., M. A. Cane, Y. Kushnir, A. C. Clement, M. B. Blumenthal, and B. Rajagopalan, 1998: Analyses of global sea surface temperature 1856–1991. J. Geophys. Res., 103, 18 56718 589, https://doi.org/10.1029/97JC01736.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Karamperidou, C., M. A. Cane, U. Lall, and A. T. Wittenberg, 2014: Intrinsic modulation of ENSO predictability viewed through a local Lyapunov lens. Climate Dyn., 42, 253270, https://doi.org/10.1007/s00382-013-1759-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Karspeck, A. R., and M. A. Cane, 2002: Tropical Pacific 1976–77 climate shift in a linear, wind-driven model. J. Phys. Oceanogr., 32, 23502360, https://doi.org/10.1175/1520-0485(2002)032<2350:TPCSIA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Karspeck, A. R., R. Seager, and M. A. Cane, 2004: Predictability of tropical Pacific decadal variability in an intermediate model. J. Climate, 17, 28422850, https://doi.org/10.1175/1520-0442(2004)017<2842:POTPDV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kessler, W. S., 2002: Is ENSO a cycle or a series of events?Geophys. Res. Lett., 29, 2125, https://doi.org/10.1029/2002GL015924.

  • Kleeman, R., 2008: Stochastic theories for the irregularity of ENSO. Philos. Trans. Roy. Soc. London, 366A, 25112526, https://doi.org/10.1098/rsta.2008.0048.

    • Search Google Scholar
    • Export Citation
  • Kosaka, Y., and S.-P. Xie, 2013: Recent global-warming hiatus tied to equatorial Pacific surface cooling. Nature, 501, 403407, https://doi.org/10.1038/nature12534.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krishnan, R., and M. Sugi, 2003: Pacific decadal oscillation and variability of the Indian summer monsoon rainfall. Climate Dyn., 21, 233242, https://doi.org/10.1007/s00382-003-0330-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mantua, N. J., and S. R. Hare, 2002: The Pacific decadal oscillation. J. Oceanogr., 58, 3544, https://doi.org/10.1023/A:1015820616384.

  • McGregor, S., N. J. Holbrook, and S. B. Power, 2007: Interdecadal sea surface temperature variability in the equatorial Pacific Ocean. Part I: The role of off-equatorial wind stresses and oceanic Rossby waves. J. Climate, 20, 26432658, https://doi.org/10.1175/JCLI4145.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., A. Hu, B. D. Santer, and S.-P. Xie, 2016a: Contribution of the interdecadal Pacific oscillation to twentieth-century global surface temperature trends. Nat. Climate Change, 6, 10051008, https://doi.org/10.1038/nclimate3107.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., A. Hu, and H. Teng, 2016b: Initialized decadal prediction for transition to positive phase of the interdecadal Pacific oscillation. Nat. Commun., 7, 11718, https://doi.org/10.1038/ncomms11718.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Newman, M., G. P. Compo, and M. A. Alexander, 2003: ENSO-forced variability of the Pacific decadal oscillation. J. Climate, 16, 38533857, https://doi.org/10.1175/1520-0442(2003)016<3853:EVOTPD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Newman, M., and Coauthors, 2016: The Pacific decadal oscillation, revisited. J. Climate, 29, 43994427, https://doi.org/10.1175/JCLI-D-15-0508.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Okumura, Y. M., 2013: Origins of tropical Pacific decadal variability: Role of stochastic atmospheric forcing from the South Pacific. J. Climate, 26, 97919796, https://doi.org/10.1175/JCLI-D-13-00448.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Okumura, Y. M., T. Sun, and X. Wu, 2017: Asymmetric modulation of El Niño and La Niña and the linkage to tropical Pacific decadal variability. J. Climate, 30, 47054733, https://doi.org/10.1175/JCLI-D-16-0680.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Power, S., T. Casey, C. Folland, A. Colman, and V. Mehta, 1999: Inter-decadal modulation of the impact of ENSO on Australia. Climate Dyn., 15, 319324, https://doi.org/10.1007/s003820050284.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ramesh, N., M. A. Cane, R. Seager, and D. E. Lee, 2017: Predictability and prediction of persistent cool states of the tropical Pacific Ocean. Climate Dyn., 49, 22912307, https://doi.org/10.1007/s00382-016-3446-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seager, R., A. R. Karspeck, M. A. Cane, Y. Kushnir, A. Giannini, A. Kaplan, B. Kerman, and J. Velez, 2004: Predicting Pacific decadal variability. Earth’s Climate: The Ocean-Atmosphere Interaction, Geophys. Monogr., Vol. 147, Amer. Geophys. Union, 105–120.

    • Crossref
    • Export Citation
  • Stuecker, M. F., F.-F. Jin, and A. Timmermann, 2015: El Niño–Southern Oscillation frequency cascade. Proc. Natl. Acad. Sci. USA, 112, 13 49013 495, https://doi.org/10.1073/pnas.1508622112.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sugihara, G., R. May, H. Ye, C. Hsieh, E. Deyle, M. Fogarty, and S. Munch, 2012: Detecting causality in complex ecosystems. Science, 338, 496500, https://doi.org/10.1126/science.1227079.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Takens, F., 1981: Detecting strange attractors in turbulence. Dynamical Systems and Turbulence, D. Rand and L.-S. Young, Eds., Lecture Notes in Mathematics, Vol. 898, Springer-Verlag, 366–381.

    • Crossref
    • Export Citation
  • Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498, https://doi.org/10.1175/BAMS-D-11-00094.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thoma, M., R. J. Greatbatch, C. Kadow, and R. Gerdes, 2015: Decadal hindcasts initialized using observed surface wind stress: Evaluation and prediction out to 2024. Geophys. Res. Lett., 42, 64546461, https://doi.org/10.1002/2015GL064833.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, C. J., D. S. Battisti, C. J. Thompson, and D. S. Battisti, 2001: A linear stochastic dynamical model of ENSO. Part II: Analysis. J. Climate, 14, 445466, https://doi.org/10.1175/1520-0442(2001)014<0445:ALSDMO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Timmermann, A., 2003: Decadal ENSO amplitude modulations: A nonlinear paradigm. Global Planet. Change, 37, 135156, https://doi.org/10.1016/S0921-8181(02)00194-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Timmermann, A., and F. Jin, 2002: A nonlinear mechanism for decadal El Niño amplitude changes. Geophys. Res. Lett., 29, 1003, https://doi.org/10.1029/2001GL013369.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., 2009: An imperative for climate change planning: Tracking Earth’s global energy. Curr. Opin. Environ. Sustainability, 1, 1927, https://doi.org/10.1016/j.cosust.2009.06.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tziperman, E., L. Stone, M. A. Cane, and H. Jarosh, 1994: El Niño chaos: Overlapping of resonances between the seasonal cycle and the Pacific Ocean-atmosphere oscillator. Science, 264, 7274, https://doi.org/10.1126/science.264.5155.72.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tziperman, E., S. E. Zebiak, and M. A. Cane, 1997: Mechanisms of seasonal–ENSO interaction. J. Atmos. Sci., 54, 6171, https://doi.org/10.1175/1520-0469(1997)054<0061:MOSEI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vimont, D. J., 2005: The contribution of the interannual ENSO cycle to the spatial pattern of decadal ENSO-like variability. J. Climate, 18, 20802092, https://doi.org/10.1175/JCLI3365.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wittenberg, A. T., 2009: Are historical records sufficient to constrain ENSO simulations? Geophys. Res. Lett., 36, L12702, https://doi.org/10.1029/2009GL038710.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wittenberg, A. T., A. Rosati, T. L. Delworth, G. A. Vecchi, and F. Zeng, 2014: ENSO modulation: Is it decadally predictable? J. Climate, 27, 26672681, https://doi.org/10.1175/JCLI-D-13-00577.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zebiak, S. E., and M. A. Cane, 1987: A model El Niño–Southern Oscillation. Mon. Wea. Rev., 115, 22622278, https://doi.org/10.1175/1520-0493(1987)115<2262:AMENO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Y., J. M. Wallace, and D. S. Battisti, 1997: ENSO-like interdecadal variability: 1900–93. J. Climate, 10, 10041020, https://doi.org/10.1175/1520-0442(1997)010<1004:ELIV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 369 116 9
PDF Downloads 320 77 10