Stability and Sea State as Limiting Conditions for TKE Dissipation and Dissipative Heating

Andrew W. Smith Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida

Search for other papers by Andrew W. Smith in
Current site
Google Scholar
PubMed
Close
,
Brian K. Haus Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida

Search for other papers by Brian K. Haus in
Current site
Google Scholar
PubMed
Close
, and
Jun A. Zhang Cooperative Institute for Marine and Atmospheric Studies, University of Miami, and NOAA/AOML/Hurricane Research Division, Miami, Florida

Search for other papers by Jun A. Zhang in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This study analyzes high-resolution ship data collected in the Gulf of Mexico during the Lagrangian Submesoscale Experiment (LASER) from January to February 2016 to produce the first reported measurements of dissipative heating in the explicitly nonhurricane atmospheric surface layer. Although typically computed from theory as a function of wind speed cubed, the dissipative heating directly estimated via the turbulent kinetic energy (TKE) dissipation rate is also presented. The dissipative heating magnitude agreed with a previous study that estimated the dissipative heating in the hurricane boundary layer using in situ aircraft data. Our observations that the 10-m neutral drag coefficient parameterized using TKE dissipation rate approaches zero slope as wind increases suggests that TKE dissipation and dissipative heating are constrained to a physical limit. Both surface-layer stability and sea state were observed to be important conditions influencing dissipative heating, with the stability determined via TKE budget terms and the sea state determined via wave steepness and age using direct shipboard measurements. Momentum and enthalpy fluxes used in the TKE budget are determined using the eddy-correlation method. It is found that the TKE dissipation rate and the dissipative heating are largest in a nonneutral atmospheric surface layer with a sea surface comprising steep wind sea and slow swell waves at a given surface wind speed, whereas the ratio of dissipative heating to enthalpy fluxes is largest in near-neutral stability where the turbulent vertical velocities are near zero.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Andrew W. Smith, andrew.smith@rsmas.miami.edu

Abstract

This study analyzes high-resolution ship data collected in the Gulf of Mexico during the Lagrangian Submesoscale Experiment (LASER) from January to February 2016 to produce the first reported measurements of dissipative heating in the explicitly nonhurricane atmospheric surface layer. Although typically computed from theory as a function of wind speed cubed, the dissipative heating directly estimated via the turbulent kinetic energy (TKE) dissipation rate is also presented. The dissipative heating magnitude agreed with a previous study that estimated the dissipative heating in the hurricane boundary layer using in situ aircraft data. Our observations that the 10-m neutral drag coefficient parameterized using TKE dissipation rate approaches zero slope as wind increases suggests that TKE dissipation and dissipative heating are constrained to a physical limit. Both surface-layer stability and sea state were observed to be important conditions influencing dissipative heating, with the stability determined via TKE budget terms and the sea state determined via wave steepness and age using direct shipboard measurements. Momentum and enthalpy fluxes used in the TKE budget are determined using the eddy-correlation method. It is found that the TKE dissipation rate and the dissipative heating are largest in a nonneutral atmospheric surface layer with a sea surface comprising steep wind sea and slow swell waves at a given surface wind speed, whereas the ratio of dissipative heating to enthalpy fluxes is largest in near-neutral stability where the turbulent vertical velocities are near zero.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Andrew W. Smith, andrew.smith@rsmas.miami.edu
Save
  • Anctil, F., M. A. Donelan, W. M. Drennan, and H. C. Graber, 1994: Eddy-correlation measurements of air–sea fluxes from a discus buoy. J. Atmos. Oceanic Technol., 11, 11441150, https://doi.org/10.1175/1520-0426(1994)011<1144:ECMOAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beron-Vera, F. J., and J. H. LaCasce, 2016: Statistics of simulated and observed pair separations in the Gulf of Mexico. J. Phys. Oceanogr., 46, 21832199, https://doi.org/10.1175/JPO-D-15-0127.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bister, M., and K. A. Emanuel, 1998: Dissipative heating and hurricane intensity. Meteor. Atmos. Phys., 65, 233240, https://doi.org/10.1007/BF01030791.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Burba, G., and D. Anderson, 2007: Introduction to the Eddy Covariance Method: General Guidelines and Conventional Workflow. LI-COR Biosciences, 141 pp., https://doi.org/10.13140/RG.2.1.3723.5683.

    • Crossref
    • Export Citation
  • Businger, S., and J. A. Businger, 2001: Viscous dissipation of turbulence kinetic energy in storms. J. Atmos. Sci., 58, 37933796, https://doi.org/10.1175/1520-0469(2001)058<3793:VDOTKE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Curcic, M., 2015: Explicit air-sea momentum exchange in coupled atmosphere-wave-ocean modeling of tropical cyclones. Ph.D. dissertation, University of Miami, https://scholarlyrepository.miami.edu/oa_dissertations/1512.

  • D’Asaro, E., C. Lee, L. Rainville, R. Harcourt, and L. Thomas, 2011: Enhanced turbulence and energy dissipation at ocean fronts. Science, 332, 318322, https://doi.org/10.1126/science.1201515.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donelan, M. A., W. M. Drennan, and A. K. Magnusson, 1996: Nonstationary analysis of the directional properties of propagating waves. J. Phys. Oceanogr., 26, 19011914, https://doi.org/10.1175/1520-0485(1996)026<1901:NAOTDP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donelan, M. A., B. K. Haus, N. Reul, W. J. Plant, M. Stiassnie, H. C. Graber, O. B. Brown, and E. S. Saltzman, 2004: On the limiting aerodynamic roughness of the ocean in very strong winds. Geophys. Res. Lett., 31, L18306, https://doi.org/10.1029/2004GL019460.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Drennan, W. M., P. K. Taylor, and M. J. Yelland, 2005: Parameterizing the sea surface roughness. J. Phys. Oceanogr., 35, 835848, https://doi.org/10.1175/JPO2704.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dugan, J. P., S. L. Panichas, and R. L. Dimarco, 1991: Decontamination of wind measurements from buoys subject to motions in a seaway. J. Atmos. Oceanic Technol., 8, 8595, https://doi.org/10.1175/1520-0426(1991)008<0085:DOWMFB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Edson, J. B., and C. W. Fairall, 1998: Similarity relationships in the marine atmospheric surface layer for terms in the TKE and scalar variance budgets. J. Atmos. Sci., 55, 23112328, https://doi.org/10.1175/1520-0469(1998)055<2311:SRITMA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1986: An air-sea interaction theory for tropical cyclones. Part I: Steady-state maintenance. J. Atmos. Sci., 43, 585605, https://doi.org/10.1175/1520-0469(1986)043<0585:AASITF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fujitani, T., 1985: Method of turbulent flux measurement on a ship by using a stable platform system. Pap. Meteor. Geophys., 36, 157170, https://doi.org/10.2467/mripapers.36.157.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gulf of Mexico Research Initiative 2018: Lagrangian Submesoscale Experiment (LASER) shipboard measurements, northern Gulf of Mexico, January–February 2016.Consortium for Advanced Research on Transport of Hydrocarbon in the Environment II (CARTHE II), accessed 24 January 2017, https://doi.org/10.7266/N7S75DRP.

    • Crossref
    • Export Citation
  • Högström, U., A. Smedman, E. Sahleé, W. M. Drennan, K. K. Kahma, H. Pettersson, and F. Zhang, 2009: The atmospheric boundary layer during swell: A field study and interpretation of the turbulent kinetic energy budget for high wave ages. J. Atmos. Sci., 66, 27642779, https://doi.org/10.1175/2009JAS2973.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holton, J. R., 2004: An Introduction to Dynamic Meteorology. Academic Press, 535 pp.

  • Jin, Y., W. T. Thompson, S. Wang, and C.-S. Liou, 2007: A numerical study of the effect of dissipative heating on tropical cyclone intensity. Wea. Forecasting, 22, 950966, https://doi.org/10.1175/WAF1028.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kieu, C., 2015: Revisiting dissipative heating in tropical cyclone maximum potential intensity. Quart. J. Roy. Meteor. Soc., 141, 24972504, https://doi.org/10.1002/qj.2534.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kolmogorov, A. N., 1941: The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers. Proc. Math. Phys. Sci., 434, 913.

    • Search Google Scholar
    • Export Citation
  • Large, W. G., and S. Pond, 1981: Open ocean momentum flux measurements in moderate to strong winds. J. Phys. Oceanogr., 11, 324336, https://doi.org/10.1175/1520-0485(1981)011<0324:OOMFMI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lund, B., H. C. Graber, K. Hessner, and N. J. Williams, 2015: On shipboard marine X-band radar near-surface current “Calibration.” J. Atmos. Oceanic Technol., 32, 19281944, https://doi.org/10.1175/JTECH-D-14-00175.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miyake, M., M. Donelan, and Y. Mitsuta, 1970: Airborne measurment of turbulent fluxes. J. Geophys. Res., 75, 45064518, https://doi.org/10.1029/JC075i024p04506.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nordeng, T. E., 1991: On the wave age dependent drag coefficient and roughness length at sea. J. Geophys. Res., 96, 71677174, https://doi.org/10.1029/90JC02649.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Olascoaga, M. J., and Coauthors, 2013: Drifter motion in the Gulf of Mexico constrained by altimetric Lagrangian coherent structures. Geophys. Res. Lett., 40, 61716175, https://doi.org/10.1002/2013GL058624.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pierson, W. J., and L. Moskowitz, 1964: A proposed spectral form for fully developed wind seas based on the similarity theory of S. A. Kitaigorodskii. J. Geophys. Res., 69, 51815190, https://doi.org/10.1029/JZ069i024p05181.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Poje, A. C., and Coauthors, 2014: Submesoscale dispersion in the vicinity of the Deepwater Horizon spill. Proc. Natl. Acad. Sci. USA, 111, 12 69312 698, https://doi.org/10.1073/pnas.1402452111.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Potter, H., 2015: Swell and the drag coefficient. Ocean Dyn., 65, 375384, https://doi.org/10.1007/s10236-015-0811-4.

  • Richman, J., and C. Garrett, 1977: The transfer of energy and momentum by the wind to the surface layer. J. Phys. Oceanogr., 7, 876881, https://doi.org/10.1175/1520-0485(1977)007<0876:TTOEAM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sjöblom, A., and A.-S. Smedman, 2002: The turbulent kinetic energy budget in the marine atmospheric surface layer. J. Geophys. Res., 107, 3142, https://doi.org/10.1029/2001JC001016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, S. D., 1988: Coefficients for sea surface wind stress, heat flux, and wind profiles as a function of wind speed and temperature. J. Geophys. Res., 93, 15 46715 472, https://doi.org/10.1029/JC093iC12p15467.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sreenivasan, K. R., 1995: On the universality of the Kolmogorov constant. Phys. Fluids, 7, 27782784, https://doi.org/10.1063/1.868656.

  • Von Engeln, A., and J. Teixeira, 2013: A planetary boundary layer height climatology derived from ECMWF reanalysis data. J. Climate, 26, 65756590, https://doi.org/10.1175/JCLI-D-12-00385.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wyngaard, J. C., and O. R. Coté, 1971: The budgets of turbulent kinetic energy and temperature variance in the atmospheric surface layer. J. Atmos. Sci., 28, 190201, https://doi.org/10.1175/1520-0469(1971)028<0190:TBOTKE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, D.-L., and E. Altshuler, 1999: The effects of dissipative heating on hurricane intensity. Mon. Wea. Rev., 127, 30323038, https://doi.org/10.1175/1520-0493(1999)127<3032:TEODHO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, J. A., 2010: Estimation of dissipative heating using low-level in situ aircraft observations in the hurricane boundary layer. J. Atmos. Sci., 67, 18531862, https://doi.org/10.1175/2010JAS3397.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, J. A., P. Zhu, F. J. Masters, R. F. Rogers, and F. D. Marks, 2011: On momentum transport and dissipative heating during hurricane landfalls. J. Atmos. Sci., 68, 13971404, https://doi.org/10.1175/JAS-D-10-05018.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 760 256 15
PDF Downloads 360 59 1