The Impact of the QBO on MJO Convection in Cloud-Resolving Simulations

Zane Martin Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York

Search for other papers by Zane Martin in
Current site
Google Scholar
PubMed
Close
,
Shuguang Wang Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York

Search for other papers by Shuguang Wang in
Current site
Google Scholar
PubMed
Close
,
Ji Nie Department of the Atmospheric and Oceanic Sciences, Peking University, Beijing, China

Search for other papers by Ji Nie in
Current site
Google Scholar
PubMed
Close
, and
Adam Sobel Department of Applied Physics and Applied Mathematics, Columbia University, New York, and Lamont-Doherty Earth Observatory, Columbia University, Palisades, New York

Search for other papers by Adam Sobel in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This study examines the relationship between the Madden–Julian oscillation (MJO) and the stratospheric quasi-biennial oscillation (QBO) in a limited-area cloud-resolving model with parameterized large-scale dynamics. The model is used to simulate two consecutive MJO events that occurred during the late fall and early winter of 2011. To test the influence of the QBO on the simulated MJO events, various QBO states are imposed via the addition of characteristic wind and temperature anomalies. In experiments with only QBO temperature anomalies imposed (without corresponding zonal wind anomalies) the strength of convection during MJO active phases is amplified for the QBO easterly phase [an anomalously cold tropical tropopause layer (TTL)] compared to the westerly QBO phase (a warm TTL), as measured by outgoing longwave radiation, cloud fraction, and large-scale ascent. This response is qualitatively consistent with the observed MJO–QBO relationship. The response of precipitation is weaker, and is less consistent across variations in the simulation configuration. Experiments with only imposed QBO wind anomalies (without corresponding temperature anomalies) show much weaker effects altogether than those with imposed temperature anomalies, suggesting that TTL temperature anomalies are a key pathway through which the QBO can modulate the MJO. Sensitivity tests indicate that the QBO influence on MJO convection depends on both the amplitude and the height of the QBO temperature anomaly: lower-altitude and larger-amplitude temperature anomalies have more pronounced effects on MJO convection.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Zane Martin, zkm2102@columbia.edu

Abstract

This study examines the relationship between the Madden–Julian oscillation (MJO) and the stratospheric quasi-biennial oscillation (QBO) in a limited-area cloud-resolving model with parameterized large-scale dynamics. The model is used to simulate two consecutive MJO events that occurred during the late fall and early winter of 2011. To test the influence of the QBO on the simulated MJO events, various QBO states are imposed via the addition of characteristic wind and temperature anomalies. In experiments with only QBO temperature anomalies imposed (without corresponding zonal wind anomalies) the strength of convection during MJO active phases is amplified for the QBO easterly phase [an anomalously cold tropical tropopause layer (TTL)] compared to the westerly QBO phase (a warm TTL), as measured by outgoing longwave radiation, cloud fraction, and large-scale ascent. This response is qualitatively consistent with the observed MJO–QBO relationship. The response of precipitation is weaker, and is less consistent across variations in the simulation configuration. Experiments with only imposed QBO wind anomalies (without corresponding temperature anomalies) show much weaker effects altogether than those with imposed temperature anomalies, suggesting that TTL temperature anomalies are a key pathway through which the QBO can modulate the MJO. Sensitivity tests indicate that the QBO influence on MJO convection depends on both the amplitude and the height of the QBO temperature anomaly: lower-altitude and larger-amplitude temperature anomalies have more pronounced effects on MJO convection.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Zane Martin, zkm2102@columbia.edu
Save
  • Anber, U., S. Wang, and A. Sobel, 2017: Coupling with ocean mixed layer leads to intraseasonal variability in tropical deep convection: Evidence from cloud-resolving simulations. J. Adv. Model. Earth Syst., 9, 616626, https://doi.org/10.1002/2016MS000803.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baldwin, M. P., and Coauthors, 2001: The quasi-biennial oscillation. Rev. Geophys., 39, 179229, https://doi.org/10.1029/1999RG000073.

  • Bergman, J., and P. D. Sardeshmukh, 2004: Dynamic stabilization of atmospheric single column models. J. Climate, 17, 10041021, https://doi.org/10.1175/1520-0442(2004)017<1004:DSOASC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blossey, P. N., C. S. Bretherton, J. Cetrone, and M. Khairoutdinov, 2007: Cloud-resolving model simulations of KWAJEX: Model sensitivities and comparisons with satellite and radar observations. J. Atmos. Sci., 64, 14881508, https://doi.org/10.1175/JAS3982.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bony, S., and K. A. Emanuel, 2005: On the role of moist processes in tropical intraseasonal variability: Cloud–radiation and moisture–convection feedbacks. J. Atmos. Sci., 62, 27702789, https://doi.org/10.1175/JAS3506.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., and P. K. Smolarkiewicz, 1989: Gravity waves, compensating subsidence, and entrainment and detrainment around cumulus clouds. J. Atmos. Sci., 46, 740759, https://doi.org/10.1175/1520-0469(1989)046<0740:GWCSAD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Charney, J. G., 1963: A note on large-scale motions in the tropics. J. Atmos. Sci., 20, 607609, https://doi.org/10.1175/1520-0469(1963)020<0607:ANOLSM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chou, M.-D., and M. J. Suarez, 1999: A solar radiation parameterization for atmospheric studies. NASA Tech. Rep. NASA/TM-1999-10460, Vol. 15, NASA, Washington, DC, 38 pp.

  • Collimore, C. C., D. W. Martin, M. H. Hitchman, A. Huesmann, and D. E. Waliser, 2003: On the relationship between the QBO and tropical deep convection. J. Climate, 16, 25522568, https://doi.org/10.1175/1520-0442(2003)016<2552:OTRBTQ>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crueger, T., and B. Stevens, 2015: The effect of atmospheric radiative heating by clouds on the Madden-Julian oscillation. J. Adv. Model. Earth Syst., 7, 854864, https://doi.org/10.1002/2015MS000434.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Daleu, C. L., and Coauthors, 2015: Intercomparison of methods of coupling between convection and large-scale circulation: 1. Comparison over uniform surface conditions. J. Adv. Model. Earth Syst., 7, 1576–1601, https://doi.org/10.1002/2015MS000468.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Daleu, C. L., and Coauthors, 2016: Intercomparison of methods of coupling between convection and large-scale circulation: 2. Comparison over nonuniform surface conditions. J. Adv. Model. Earth Syst., 8, 387405, https://doi.org/10.1002/2015MS000570.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Edman, J. P., and D. M. Romps, 2014: An improved weak pressure gradient scheme for single-column modeling. J. Atmos. Sci., 71, 24152429, https://doi.org/10.1175/JAS-D-13-0327.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Edman, J. P., and D. M. Romps, 2015: Self-consistency tests of large-scale dynamics parameterizations for single-column modeling. J. Adv. Model. Earth Syst., 7, 320334, https://doi.org/10.1002/2014MS000378.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K., A. A. Wing, and E. M. Vincent, 2014: Radiative-convective instability. J. Adv. Model. Earth Syst., 6, 75–90, https://doi.org/10.1002/2013MS000270.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fulton, S. R., and W. H. Schubert, 1985: Vertical normal transforms: Theory and application. Mon. Wea. Rev., 113, 647658, https://doi.org/10.1175/1520-0493(1985)113<0647:VNMTTA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garfinkel, C. I., and D. L. Hartmann, 2011: The influence of the quasi-biennial oscillation on the troposphere in winter in a hierarchy of models. Part I: Simplified dry GCMs. J. Atmos. Sci., 68, 12731289, https://doi.org/10.1175/2011JAS3665.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Giorgetta, M. A., L. Bengtsson, and K. Arpe, 1999: An investigation of QBO signals in the East Asian and Indian monsoon in GCM experiments. Climate Dyn., 15, 435450, https://doi.org/10.1007/s003820050292.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., X. Wu, and M. W. Moncrieff, 1996: Cloud resolving modeling of tropical cloud systems during Phase III of GATE. Part I: Two-dimensional experiments. J. Atmos. Sci., 53, 36843709, https://doi.org/10.1175/1520-0469(1996)053<3684:CRMOTC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gray, W. M., J. D. Sheaffer, and J. A. Knaff, 1992a: Hypothesized mechanism for stratospheric QBO influence on ENSO variability. Geophys. Res. Lett., 19, 107110, https://doi.org/10.1029/91GL02950.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gray, W. M., J. D. Sheaffer, and J. A. Knaff, 1992b: Influence of the stratospheric QBO on ENSO variability. J. Meteor. Soc. Japan, 70, 975995, https://doi.org/10.2151/jmsj1965.70.5_975.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hartmann, D. L., J. R. Holton, and Q. Fu, 2001: The heat balance of the tropical tropopause, cirrus, and stratospheric dehydration. Geophys. Res. Lett., 28, 19691972, https://doi.org/10.1029/2000GL012833.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Held, I. M., and B. J. Hoskins, 1985: Large-scale eddies and the general circulation of the troposphere. Advances in Geophysics, Vol. 28, Academic Press, 3–31.

    • Crossref
    • Export Citation
  • Hendon, H. H., and S. Abhik, 2018: Differences in vertical structure of the Madden-Julian oscillation associated with the quasi-biennial oscillation. Geophys. Res. Lett., 45, 44194428, https://doi.org/10.1029/2018GL077207.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Herman, M. J., and D. J. Raymond, 2014: WTG cloud modeling with spectral decomposition of heating. J. Adv. Model. Earth Syst., 6, 11211140, https://doi.org/10.1002/2014MS000359.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holton, J. R., and R. S. Lindzen, 1972: An updated theory for the quasi-biennial cycle of the tropical stratosphere. J. Atmos. Sci., 29, 10761080, https://doi.org/10.1175/1520-0469(1972)029<1076:AUTFTQ>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 23182341, https://doi.org/10.1175/MWR3199.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, Y., G. Liu, and J.-L. F. Li, 2016: Assessing the radiative effects of global ice clouds based on CloudSat and CALIPSO measurements. J. Climate, 29, 76517674, https://doi.org/10.1175/JCLI-D-15-0799.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hood, L. L., 2017: QBO/solar modulation of the boreal winter Madden-Julian oscillation: A prediction for the coming solar minimum. Geophys. Res. Lett., 44, 38493857, https://doi.org/10.1002/2017GL072832.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Iacono, M. J., J. S. Delamere, E. J. Mlawer, M. W. Shephard, S. A. Clough, and W. D. Collins, 2008: Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res., 113, D13103, https://doi.org/10.1029/2008JD009944.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, R. H., and P. E. Ciesielski, 2013: Structure and properties of Madden–Julian oscillations deduced from DYNAMO sounding arrays. J. Atmos. Sci., 70, 31573179, https://doi.org/10.1175/JAS-D-13-065.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, R. H., P. E. Ciesielski, J. H. Ruppert, and M. Katsumata, 2015: Sounding-based thermodynamic budgets for DYNAMO. J. Atmos. Sci., 72, 598622, https://doi.org/10.1175/JAS-D-14-0202.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klemp, J. B., J. Dudhia, and A. D. Hassiotis, 2008: An upper gravity-wave absorbing layer for NWP applications. Mon. Wea. Rev., 136, 39874004, https://doi.org/10.1175/2008MWR2596.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuang, Z., 2008: Modeling the interaction between cumulus convection and linear gravity waves using a limited-domain cloud system-resolving model. J. Atmos. Sci., 65, 576591, https://doi.org/10.1175/2007JAS2399.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuma, K.-I., 1990: A quasi-biennial oscillation in the intensity of the intra-seasonal oscillation. Int. J. Climatol., 10, 263278, https://doi.org/10.1002/joc.3370100304.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, J. C. K., and N. P. Klingaman, 2018: The effect of the quasi-biennial oscillation on the Madden–Julian oscillation in the Met Office Unified Model Global Ocean Mixed Layer configuration. Atmos. Sci. Lett., 19, e816, https://doi.org/10.1002/asl.816.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, X., and Coauthors, 2018: Evolution of precipitation structure during the November DYNAMO MJO event: Cloud-resolving model intercomparison and cross validation using radar observations. J. Geophys. Res. Atmos., 123, 35303555, https://doi.org/10.1002/2017JD027775.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liess, S., and M. A. Geller, 2012: On the relationship between QBO and distribution of tropical deep convection. J. Geophys. Res. Atmos., 117, D03108, https://doi.org/10.1029/2011JD016317.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lindzen, R. S., and J. R. Holton, 1968: A theory of the quasi-biennial oscillation. J. Atmos. Sci., 25, 10951107, https://doi.org/10.1175/1520-0469(1968)025<1095:ATOTQB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Madden, R. A., and P. R. Julian, 1994: Observations of the 40-50-day tropical oscillation—A review. Mon. Wea. Rev., 122, 814837, https://doi.org/10.1175/1520-0493(1994)122<0814:OOTDTO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mapes, B. E., 1997: What controls large-scale variations of deep convection? Proc. Workshop on New Insights and Approaches to Cumulus Parameterization, Reading, United Kingdom, ECMWF, 157–165.

  • Mapes, B. E., 2004: Sensitivities of cumulus ensemble rainfall in a cloud-resolving model with parameterized large-scale dynamics. J. Atmos. Sci., 61, 23082317, https://doi.org/10.1175/1520-0469(2004)061<2308:SOCRIA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mapes, B. E., and P. Zuidema, 1996: Radiative-dynamical consequences of dry tongues in the tropical troposphere. J. Atmos. Sci., 53, 620638, https://doi.org/10.1175/1520-0469(1996)053<0620:RDCODT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshall, A. G., H. H. Hendon, S.-W. Son, and Y. Lim, 2017: Impact of the quasi-biennial oscillation on predictability of the Madden–Julian oscillation. Climate Dyn., 49, 13651377, https://doi.org/10.1007/s00382-016-3392-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matsui, T., W.-K. Tao, and R. Shi, 2007: Goddard radiation and aerosol direct effect in Goddard WRF. NASA/UMD WRF Workshop, College Park, MD, NASA and University of Maryland, College Park, 12 pp.

  • Morrison, H., G. Thompson, and V. Tatarskii, 2009: Impact of cloud microphysics on the development of trailing stratiform precipitation in a simulated squall line: Comparison of one-and two-moment schemes. Mon. Wea. Rev., 137, 9911007, https://doi.org/10.1175/2008MWR2556.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nie, J., and A. H. Sobel, 2015: Responses of tropical deep convection to the QBO: Cloud-resolving simulations. J. Atmos. Sci., 72, 36253638, https://doi.org/10.1175/JAS-D-15-0035.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nie, J., and A. H. Sobel, 2016: Modeling the interaction between quasi-geostrophic vertical motion and convection in a single column. J. Atmos. Sci., 73, 11011117, https://doi.org/10.1175/JAS-D-15-0205.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nishimoto, E., and S. Yoden, 2017: Influence of the stratospheric quasi-biennial oscillation on the Madden–Julian oscillation during austral summer. J. Atmos. Sci., 74, 11051125, https://doi.org/10.1175/JAS-D-16-0205.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Plumb, R. A., and D. McEwan, 1978: The instability of a forced standing wave in a viscous stratified fluid: A laboratory analogue of the quasi-biennial oscillation. J. Atmos. Sci., 35, 18271839, https://doi.org/10.1175/1520-0469(1978)035<1827:TIOAFS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Raymond, D. J., and X. Zeng, 2005: Modelling tropical atmospheric convection in the context of the weak temperature gradient approximation. Quart. J. Roy. Meteor. Soc., 131, 13011320, https://doi.org/10.1256/qj.03.97.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Romps, D., 2012a: Numerical tests of the weak pressure gradient approximation. J. Atmos. Sci., 69, 28462856, https://doi.org/10.1175/JAS-D-11-0337.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Romps, D., 2012b: Weak pressure gradient approximation and its analytical solutions. J. Atmos. Sci., 69, 28352845, https://doi.org/10.1175/JAS-D-11-0336.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sentić, S., S. L. Sessions, and Z. Fuchs, 2015: Diagnosing DYNAMO convection with weak temperature gradient simulations. J. Adv. Model. Earth Syst., 7, 18491871, https://doi.org/10.1002/2015MS000531.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sessions, S. L., S. Sugaya, D. J. Raymond, and A. H. Sobel, 2010: Multiple equilibria in a cloud-resolving model using the weak temperature gradient approximation. J. Geophys. Res., 115, D12110, https://doi.org/10.1029/2009JD013376.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sessions, S. L., S. Sentić, and M. J. Herman, 2016: The role of radiation in organizing convection in weak temperature gradient simulations. J. Adv. Model. Earth Syst., 8, 244271, https://doi.org/10.1002/2015MS000587.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shi, J. J., and Coauthors, 2010: WRF simulations of the 20–22 January 2007 snow events over eastern Canada: Comparison with in situ and satellite observations. J. Appl. Meteor. Climatol., 49, 22462266, https://doi.org/10.1175/2010JAMC2282.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp., https://doi.org/10.5065/D68S4MVH.

    • Crossref
    • Export Citation
  • Sobel, A. H., and C. S. Bretherton, 2000: Modeling tropical precipitation in a single column. J. Climate, 13, 43784392, https://doi.org/10.1175/1520-0442(2000)013<4378:MTPIAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sobel, A. H., and E. D. Maloney, 2012: An idealized semi-empirical framework for modeling the Madden–Julian oscillation. J. Atmos. Sci., 69, 16911705, https://doi.org/10.1175/JAS-D-11-0118.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sobel, A. H., and E. D. Maloney, 2013: Moisture modes and the eastward propagation of the MJO. J. Atmos. Sci., 70, 187192, https://doi.org/10.1175/JAS-D-12-0189.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sobel, A. H., G. Bellon, and J. Bacmeister, 2007: Multiple equilibria in a single-column model of the tropical atmosphere. Geophys. Res. Lett., 34, L22804, https://doi.org/10.1029/2007GL031320.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sobel, A. H., S. Wang, and D. Kim, 2014: Moist static energy budget of the MJO during DYNAMO. J. Atmos. Sci., 71, 42764291, https://doi.org/10.1175/JAS-D-14-0052.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Son, S.-W., Y. Lim, C. Yoo, H. H. Hendon, and J. Kim, 2017: Stratospheric control of Madden–Julian oscillation. J. Climate, 30, 19091922, https://doi.org/10.1175/JCLI-D-16-0620.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tao, W.-K., D. Johnson, C.-L. Shie, and J. Simpson, 2004: The atmospheric energy budget and large-scale precipitation efficiency of convective systems during TOGA COARE, GATE, SCSMEX, and ARM: Cloud-resolving model simulations. J. Atmos. Sci., 61, 24052423, https://doi.org/10.1175/1520-0469(2004)061<2405:TAEBAL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tulich, S. N., D. A. Randall, and B. E. Mapes, 2007: Vertical-mode and cloud decomposition of large-scale convectively coupled gravity waves in a two-dimensional cloud-resolving model. J. Atmos. Sci., 64, 12101229, https://doi.org/10.1175/JAS3884.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, J., H.-M. Kim, E. K. M. Chang, and S.-W. Son, 2018: Modulation of the MJO and North Pacific storm track relationship by the QBO. J. Geophys. Res. Atmos., 123, 39763992, https://doi.org/10.1029/2017JD027977.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, S., and A. H. Sobel, 2011: Response of convection to relative sea surface temperature: Cloud-resolving simulations in two and three dimensions. J. Geophys. Res., 116, D11119, https://doi.org/10.1029/2010JD015347.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, S., A. H. Sobel, and Z. Kuang, 2013: Cloud-resolving simulation of TOGA-COARE using parameterized large-scale dynamics. J. Geophys. Res. Atmos., 118, 62906301, https://doi.org/10.1002/jgrd.50510.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, S., A. H. Sobel, A. Fridlind, Z. Feng, J. Comstock, P. Minnis, and M. Nordeen, 2015: Simulations of cloud-radiation interaction using large-scale forcing derived from the CINDY/DYNAMO northern sounding array. J. Adv. Model. Earth Syst., 7, 14721498, https://doi.org/10.1002/2015MS000461.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, S., A. H. Sobel, and J. Nie, 2016: Modeling the MJO in a cloud-resolving model with parameterized large-scale dynamics: Vertical structure, radiation, and horizontal advection of dry air. J. Adv. Model. Earth Syst., 8, 121139, https://doi.org/10.1002/2015MS000529.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, X., W. W. Grabowski, and M. W. Moncrieff, 1998: Long-term behavior of cloud systems in TOGA COARE and their interactions with radiative and surface processes. Part I: Two-dimensional modeling study. J. Atmos. Sci., 55, 26932714, https://doi.org/10.1175/1520-0469(1998)055<2693:LTBOCS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, Z., E. S. Sarachik, and D. S. Battisti, 2000: Vertical structure of convective heating and the three-dimensional structure of the forced circulation on an equatorial beta plane. J. Atmos. Sci., 57, 21692187, https://doi.org/10.1175/1520-0469(2000)057<2169:VSOCHA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, Q., Q. Fu, and Y. Hu, 2010: Radiative impacts of clouds in the tropical tropopause layer. J. Geophys. Res., 115, D00H12, https://doi.org/10.1029/2009JD012393.

    • Search Google Scholar
    • Export Citation
  • Yoneyama, K., C. Zhang, and C. N. Long, 2013: Tracking pulses of the Madden–Julian oscillation. Bull. Amer. Meteor. Soc., 94, 18711891, https://doi.org/10.1175/BAMS-D-12-00157.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yoo, C., and S.-W. Son, 2016: Modulation of the boreal wintertime Madden–Julian oscillation by the stratospheric quasi-biennial oscillation. Geophys. Res. Lett., 43, 13921398, https://doi.org/10.1002/2016GL067762.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, L., and R. A. Weller, 2007: Objectively analyzed air–sea heat fluxes for the global ice-free oceans (1981–2005). Bull. Amer. Meteor. Soc., 88, 527539, https://doi.org/10.1175/BAMS-88-4-527.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, L., X. Jin, and R. A. Weller, 2008: Multidecade Global Flux Datasets from the Objectively Analyzed Air-Sea Fluxes (OAFlux) Project: Latent and sensible heat fluxes, ocean evaporation, and related surface meteorological variables. OAFlux Project Tech. Rep. OA-2008-01, Woods Hole Oceanographic Institution, Woods Hole, MA, 64 pp., http://oaflux.whoi.edu/pdfs/OAFlux_TechReport_3rd_release.pdf.

  • Zhang, C., 2005: Madden–Julian oscillation. Rev. Geophys., 43, RG2003, https://doi.org/10.1029/2004RG000158.

  • Zhang, C., 2013: Madden–Julian oscillation: Bridging weather and climate. Bull. Amer. Meteor. Soc., 94, 18491870, https://doi.org/10.1175/BAMS-D-12-00026.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, C., and B. Zhang, 2018: QBO–MJO connection. J. Geophys. Res. Atmos., 123, 29572967, https://doi.org/10.1002/2017JD028171.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 921 229 18
PDF Downloads 744 128 11