The Early Development of the 2015/16 Quasi-Biennial Oscillation Disruption

Pu Lin Program in Atmospheric and Oceanic Sciences, Princeton University, Princeton, New Jersey

Search for other papers by Pu Lin in
Current site
Google Scholar
PubMed
Close
,
Isaac Held NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey

Search for other papers by Isaac Held in
Current site
Google Scholar
PubMed
Close
, and
Yi Ming NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey

Search for other papers by Yi Ming in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

An unprecedented disruption of the quasi-biennial oscillation (QBO) started to develop from late 2015. The early development of this event is analyzed using the space–time spectra of eddies from reanalysis data. While the extratropical waves propagating horizontally into the tropics were assumed to be the main driver for the disruption, it was not clear why these waves dissipated near the jet core instead of near the jet edge as linear theory predicts. This study shows that the drastic deceleration of the equatorial jet was largely brought about by a single strong wave packet, and the local winds experienced by the wave packet served as a better indicator of the wave breaking latitude than the zonal mean winds. Surprisingly, tropical mixed Rossby–gravity waves also made an appreciable contribution to the deceleration of the equatorial westerly jet by the horizontal eddy momentum fluxes, especially before January 2016. The horizontal eddy momentum fluxes associated with the tropical waves arise from the deformation of the wave structure when background westerlies increase with height. These horizontal eddy momentum anomalies from the tropical waves are commonly observed in the reanalysis data but are typically much weaker than those in the 2015/16 winter. The possibility exists that exceptionally strong equatorially trapped waves precondition the flow to disruption by an extratropical disturbance.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Pu Lin, pulin@princeton.edu

Abstract

An unprecedented disruption of the quasi-biennial oscillation (QBO) started to develop from late 2015. The early development of this event is analyzed using the space–time spectra of eddies from reanalysis data. While the extratropical waves propagating horizontally into the tropics were assumed to be the main driver for the disruption, it was not clear why these waves dissipated near the jet core instead of near the jet edge as linear theory predicts. This study shows that the drastic deceleration of the equatorial jet was largely brought about by a single strong wave packet, and the local winds experienced by the wave packet served as a better indicator of the wave breaking latitude than the zonal mean winds. Surprisingly, tropical mixed Rossby–gravity waves also made an appreciable contribution to the deceleration of the equatorial westerly jet by the horizontal eddy momentum fluxes, especially before January 2016. The horizontal eddy momentum fluxes associated with the tropical waves arise from the deformation of the wave structure when background westerlies increase with height. These horizontal eddy momentum anomalies from the tropical waves are commonly observed in the reanalysis data but are typically much weaker than those in the 2015/16 winter. The possibility exists that exceptionally strong equatorially trapped waves precondition the flow to disruption by an extratropical disturbance.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Pu Lin, pulin@princeton.edu
Save
  • Abalos, M., W. J. Randel, and T. Birner, 2016: Phase-speed spectra of eddy tracer fluxes linked to isentropic stirring and mixing in the upper troposphere and lower stratosphere. J. Atmos. Sci., 73, 47114730, https://doi.org/10.1175/JAS-D-16-0167.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Andrews, D. G., and M. E. McIntyre, 1976: Planetary waves in horizontal and vertical shear: Asymptotic theory for equatorial waves in weak shear. J. Atmos. Sci., 33, 20492053, https://doi.org/10.1175/1520-0469(1976)033<2049:PWIHAV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Andrews, D. G., J. R. Holton, and C. B. Leovy, 1987: Middle Atmosphere Dynamics. International Geophysics Series, Vol. 40, Academic Press, 489 pp.

  • Avery, M. A., S. M. Davis, K. H. Rosenlof, H. Ye, and A. E. Dessler, 2017: Large anomalies in lower stratospheric water vapour and ice during the 2015–2016 El Niño. Nat. Geosci., 10, 405409, https://doi.org/10.1038/ngeo2961.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baldwin, M. P., and Coauthors, 2001: The quasi-biennial oscillation. Rev. Geophys., 39, 179229, https://doi.org/10.1029/1999RG000073.

  • Barton, C. A., and J. P. McCormack, 2017: Origin of the 2016 QBO disruption and its relationship to extreme El Niño events. Geophys. Res. Lett., 44, 11 15011 157, https://doi.org/10.1002/2017GL075576.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Campbell, L. J., 2004: Wave–mean-flow interactions in a forced Rossby wave packet critical layer. Stud. Appl. Math., 112, 3985, https://doi.org/10.1111/j.1467-9590.2004.01587.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coy, L., P. A. Newman, S. Pawson, and L. R. Lait, 2017: Dynamics of the disrupted 2015/16 quasi-biennial oscillation. J. Climate, 30, 56615674, https://doi.org/10.1175/JCLI-D-16-0663.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dunkerton, T. J., 1997: The role of gravity waves in the quasi-biennial oscillation. J. Geophys. Res., 102, 26 05326 076, https://doi.org/10.1029/96JD02999.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Enomoto, T., and Y. Matsuda, 1999: Rossby wavepacket propagation in a zonally-varying basic flow. Tellus, 51, 588602, https://doi.org/10.3402/tellusa.v51i5.14477.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Esler, J. G., L. M. Polvani, and R. A. Plumb, 2000: The effect of a Hadley circulation on the propagation and reflection of planetary waves in a simple one-layer model. J. Atmos. Sci., 57, 15361556, https://doi.org/10.1175/1520-0469(2000)057<1536:TEOAHC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fyfe, J., and I. Held, 1990: The two-fifths and one-fifth rules for Rossby wave breaking in the WKB limit. J. Atmos. Sci., 47, 697706, https://doi.org/10.1175/1520-0469(1990)047<0697:TTFAOF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hayashi, Y., 1971: A generalized method of resolving disturbances into progressive and retrogressive waves by space Fourier and time cross-spectral analyses. J. Meteor. Soc. Japan, 49, 125128, https://doi.org/10.2151/jmsj1965.49.2_125.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hitchcock, P., P. H. Haynes, W. J. Randel, and T. Birner, 2018: The emergence of shallow easterly jets within QBO westerlies. J. Atmos. Sci., 75, 2140, https://doi.org/10.1175/JAS-D-17-0108.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holt, L. A., M. J. Alexander, L. Coy, A. Molod, W. Putman, and S. Pawson, 2016: Tropical waves and the quasi-biennial oscillation in a 7-km global climate simulation. J. Atmos. Sci., 73, 37713783, https://doi.org/10.1175/JAS-D-15-0350.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holton, J. R., and R. S. Lindzen, 1972: An updated theory for the quasi-biennial cycle of the tropical stratosphere. J. Atmos. Sci., 29, 10761080, https://doi.org/10.1175/1520-0469(1972)029<1076:AUTFTQ>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, S., and A. V. Fedorov, 2017: The extreme El Niño of 2015–2016 and the end of global warming hiatus. Geophys. Res. Lett., 44, 38163824, https://doi.org/10.1002/2017GL072908.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, Y.-H., and H.-Y. Chun, 2015: Momentum forcing of the quasi-biennial oscillation by equatorial waves in recent reanalyses. Atmos. Phys. Chem., 15, 65776587, https://doi.org/10.5194/acp-15-6577-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Magnusdottir, G., and P. H. Haynes, 1999: Reflection of planetary waves in three-dimension tropospheric flows. J. Atmos. Sci., 56, 652670, https://doi.org/10.1175/1520-0469(1999)056<0652:ROPWIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matsuno, T., 1966: Quasi-geostrophic motions in the equatorial area. J. Meteor. Soc. Japan, 44, 2543, https://doi.org/10.2151/jmsj1965.44.1_25.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Newman, P. A., L. Coy, S. Pawson, and L. R. Lait, 2016: The anomalous change in the QBO in 2015–2016. Geophys. Res. Lett., 43, 87918797, https://doi.org/10.1002/2016GL070373.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Osprey, S. M., N. Butchart, J. R. Knight, A. A. Scaife, K. Hamilton, J. A. Anstey, V. Schenzinger, and C. Zhang, 2016: An unexpected disruption of the atmospheric quasi-biennial oscillation. Science, 353, 14241427, https://doi.org/10.1126/science.aah4156.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O’Sullivan, D., 1997: Interaction of extratropical Rossby waves with westerly quasi-biennial oscillation winds. J. Geophys. Res., 102, 19 46119 469, https://doi.org/10.1029/97JD01524.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Randel, W. J., and I. M. Held, 1991: Phase speed spectra of transient eddy fluxes and critical layer absorption. J. Atmos. Sci., 48, 688697, https://doi.org/10.1175/1520-0469(1991)048<0688:PSSOTE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Santoso, A., M. J. McPhaden, and W. Cai, 2017: The defining characteristics of ENSO extremes and the strong 2015/2016 El Niño. Rev. Geophys., 55, 10791129, https://doi.org/10.1002/2017RG000560.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tweedy, O. V., and Coauthors, 2017: Response of trace gases to the disrupted 2015–2016 quasi-biennial oscillation. Atmos. Phys. Chem., 17, 68136823, https://doi.org/10.5194/acp-17-6813-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • von Storch, H., and F. W. Zwiers, 1999: Statistical Analysis in Climate Research. Cambridge University Press, 484 pp.

    • Crossref
    • Export Citation
  • Wallace, J. M., R. L. Panetta, and J. Estberg, 1993: Representation of the equatorial stratospheric quasi-biennial oscillation in EOF phase space. J. Atmos. Sci., 50, 17511762, https://doi.org/10.1175/1520-0469(1993)050<1751:ROTESQ>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Watanabe, S., K. Hamilton, S. Osprey, Y. Kawatani, and E. Nishimoto, 2018: First successful hindcast of the 2016 disruption of the stratospheric quasi-biennial oscillation. Geophys. Res. Lett., 45, 16021610, https://doi.org/10.1002/2017GL076406.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Waugh, D. W., L. M. Polvani, and R. A. Plumb, 1994: Nonlinear, barotropic response to a localized topographic forcing: Formation of a “tropical surf zone” and its effect on interhemispheric propagation. J. Atmos. Sci., 51, 14011416, https://doi.org/10.1175/1520-0469(1994)051<1401:NBRTAL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wheeler, M., and G. N. Kiladis, 1999: Convectively coupled equatorial waves: Analysis of clouds and temperature in the wavenumber–frequency domain. J. Atmos. Sci., 56, 374399, https://doi.org/10.1175/1520-0469(1999)056<0374:CCEWAO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 773 170 11
PDF Downloads 639 123 8