Remote Sensing of Sea Salt Aerosol below Trade Wind Clouds

Marcus Klingebiel Max-Planck-Institut für Meteorologie, Hamburg, Germany

Search for other papers by Marcus Klingebiel in
Current site
Google Scholar
PubMed
Close
,
Virendra P. Ghate Argonne National Laboratory, Argonne, Illinois

Search for other papers by Virendra P. Ghate in
Current site
Google Scholar
PubMed
Close
,
Ann Kristin Naumann Max-Planck-Institut für Meteorologie, Hamburg, Germany

Search for other papers by Ann Kristin Naumann in
Current site
Google Scholar
PubMed
Close
,
Florian Ditas Max-Planck-Institut für Chemie, Mainz, Germany

Search for other papers by Florian Ditas in
Current site
Google Scholar
PubMed
Close
,
Mira L. Pöhlker Max-Planck-Institut für Chemie, Mainz, Germany

Search for other papers by Mira L. Pöhlker in
Current site
Google Scholar
PubMed
Close
,
Christopher Pöhlker Max-Planck-Institut für Chemie, Mainz, Germany

Search for other papers by Christopher Pöhlker in
Current site
Google Scholar
PubMed
Close
,
Konrad Kandler Technische Universität Darmstadt, Darmstadt, Germany

Search for other papers by Konrad Kandler in
Current site
Google Scholar
PubMed
Close
,
Heike Konow Universität Hamburg, Hamburg, Germany

Search for other papers by Heike Konow in
Current site
Google Scholar
PubMed
Close
, and
Bjorn Stevens Max-Planck-Institut für Meteorologie, Hamburg, Germany

Search for other papers by Bjorn Stevens in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Sea salt aerosol in the boundary layer below shallow cumulus clouds is remotely observed with a Ka-band cloud radar at the Barbados Cloud Observatory and is detected in 76% of the measurements over 1 year. Carried by convection, sea salt particles with a diameter larger than 500 nm show an upward motion of 0.2 m s−1 below shallow cumulus clouds for a 2-day case study. Caused by an increasing relative humidity with increasing altitude, the sea salt particles become larger as they move closer to the cloud base. By using combined measurements of a Ka-band cloud radar and a Raman lidar, the retrieved equivolumetric diameter of the hygroscopically grown sea salt particles is found to be between 6 and 11 μm with a total number concentration of 20 cm−3 near cloud base. Assuming a fixed shape parameter, a size distribution of sea salt particles under high-relative-humidity conditions below cloud base is estimated and agrees with measurements taken by a dry-deposition sampler and online aerosol observations. The methods outlined in this paper can be used in future studies to get a better understanding of the vertical and temporal sea salt distribution in the boundary layer and sea salt aerosol–cloud interaction processes.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Marcus Klingebiel, marcus.klingebiel@mpimet.mpg.de

Abstract

Sea salt aerosol in the boundary layer below shallow cumulus clouds is remotely observed with a Ka-band cloud radar at the Barbados Cloud Observatory and is detected in 76% of the measurements over 1 year. Carried by convection, sea salt particles with a diameter larger than 500 nm show an upward motion of 0.2 m s−1 below shallow cumulus clouds for a 2-day case study. Caused by an increasing relative humidity with increasing altitude, the sea salt particles become larger as they move closer to the cloud base. By using combined measurements of a Ka-band cloud radar and a Raman lidar, the retrieved equivolumetric diameter of the hygroscopically grown sea salt particles is found to be between 6 and 11 μm with a total number concentration of 20 cm−3 near cloud base. Assuming a fixed shape parameter, a size distribution of sea salt particles under high-relative-humidity conditions below cloud base is estimated and agrees with measurements taken by a dry-deposition sampler and online aerosol observations. The methods outlined in this paper can be used in future studies to get a better understanding of the vertical and temporal sea salt distribution in the boundary layer and sea salt aerosol–cloud interaction processes.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Marcus Klingebiel, marcus.klingebiel@mpimet.mpg.de
Save
  • Acquistapace, C., S. Kneifel, U. Löhnert, P. Kollias, M. Maahn, and M. Bauer-Pfundstein, 2017: Optimizing observations of drizzle onset with millimeter-wavelength radars. Atmos. Meas. Tech., 10, 17831802, https://doi.org/10.5194/amt-10-1783-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ault, A. P., and Coauthors, 2013: Size-dependent changes in sea spray aerosol composition and properties with different seawater conditions. Environ. Sci. Technol., 47, 56035612, https://doi.org/10.1021/es400416g.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Erickson, D. J., and R. A. Duce, 1988: On the global flux of atmospheric sea salt. J. Geophys. Res., 93, 14 07914 088, https://doi.org/10.1029/JC093iC11p14079.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Estillore, A. D., and Coauthors, 2017: Linking hygroscopicity and the surface microstructure of model inorganic salts, simple and complex carbohydrates, and authentic sea spray aerosol particles. Phys. Chem. Chem. Phys., 19, 21 10121 111, https://doi.org/10.1039/C7CP04051B.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Görsdorf, U., V. Lehmann, M. Bauer-Pfundstein, G. Peters, D. Vavriv, V. Vinogradov, and V. Volkov, 2015: A 35-GHz polarimetric Doppler radar for long-term observations of cloud parameters—Description of system and data processing. J. Atmos. Oceanic Technol., 32, 675690, https://doi.org/10.1175/JTECH-D-14-00066.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gossard, E. E., W. D. Neff, R. J. Zamora, and J. E. Gaynor, 1984: The fine structure of elevated refractive layers: Implications for over-the-horizon propagation and radar sounding systems. Radio Sci., 19, 15231533, https://doi.org/10.1029/RS019i006p01523.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haarig, M., A. Ansmann, J. Gasteiger, K. Kandler, D. Althausen, H. Baars, and D. A. Farrell, 2017: Dry versus wet marine particle optical properties: RH dependence of depolarization ratio, backscatter, and extinction from multiwavelength lidar measurements during SALTRACE. Atmos. Chem. Phys., 17, 14 19914 217, https://doi.org/10.5194/acp-17-14199-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jaeglé, L., P. K. Quinn, T. S. Bates, B. Alexander, and J.-T. Lin, 2011: Global distribution of sea salt aerosols: New constraints from in situ and remote sensing observations. Atmos. Chem. Phys., 11, 31373157, https://doi.org/10.5194/acp-11-3137-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jensen, J. B., and A. D. Nugent, 2017: Condensational growth of drops formed on giant sea-salt aerosol particles. J. Atmos. Sci., 74, 679697, https://doi.org/10.1175/JAS-D-15-0370.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, D. B., 1982: The role of giant and ultragiant aerosol particles in warm rain initiation. J. Atmos. Sci., 39, 448460, https://doi.org/10.1175/1520-0469(1982)039<0448:TROGAU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kandler, K., and Coauthors, 2011: Electron microscopy of particles collected at Praia, Cape Verde, during the Saharan Mineral Dust Experiment: Particle chemistry, shape, mixing state and complex refractive index. Tellus, 63B, 475496, https://doi.org/10.1111/j.1600-0889.2011.00550.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kandler, K., K. Schneiders, M. Ebert, M. Hartmann, S. Weinbruch, M. Prass, and C. Pöhlker, 2018: Composition and mixing state of atmospheric aerosols determined by electron microscopy: Method development and application to aged Saharan dust deposition in the Caribbean boundary layer. Atmos. Chem. Phys., 18, 13 42913 455, https://doi.org/10.5194/acp-18-13429-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Latham, J., and M. H. Smith, 1990: Effect on global warming of wind-dependent aerosol generation at the ocean surface. Nature, 347, 372373, https://doi.org/10.1038/347372a0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • LeMone, M. A., and W. T. Pennell, 1976: The relationship of trade wind cumulus distribution to subcloud layer fluxes and structure. Mon. Wea. Rev., 104, 524539, https://doi.org/10.1175/1520-0493(1976)104<0524:TROTWC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Levin, Z., and W. R. Cotton, 2009: Aerosol Pollution Impact on Precipitation: A Scientific Review. Springer Netherlands, 386 pp., https://doi.org/10.1007/978-1-4020-8690-8.

    • Crossref
    • Export Citation
  • Lewis, E., and S. Schwartz, 2004: Sea Salt Aerosol Production: Mechanisms, Methods, Measurements and Models. Geophys. Monogr., Vol. 152, Amer. Geophys. Union, 413 pp.

    • Search Google Scholar
    • Export Citation
  • Medeiros, B., and L. Nuijens, 2016: Clouds at Barbados are representative of clouds across the trade wind regions in observations and climate models. Proc. Natl. Acad. Sci. USA, 113, E3062E3070, https://doi.org/10.1073/pnas.1521494113.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mordy, W., 1959: Computations of the growth by condensation of a population of cloud droplets. Tellus, 11, 1644, https://doi.org/10.3402/tellusa.v11i1.9283.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morris, H. S., A. D. Estillore, O. Laskina, V. H. Grassian, and A. V. Tivanski, 2016: Quantifying the hygroscopic growth of individual submicrometer particles with atomic force microscopy. Anal. Chem., 88, 36473654, https://doi.org/10.1021/acs.analchem.5b04349.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Naumann, A. K., and A. Seifert, 2016: Recirculation and growth of raindrops in simulated shallow cumulus. J. Adv. Model. Earth Syst., 8, 520537, https://doi.org/10.1002/2016MS000631.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Noll, K. E., and K. Y. Fang, 1989: Development of a dry deposition model for atmospheric coarse particles. Atmos. Environ., 23, 585594, https://doi.org/10.1016/0004-6981(89)90007-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nuijens, L., B. Stevens, and A. P. Siebesma, 2009: The environment of precipitating shallow cumulus convection. J. Atmos. Sci., 66, 19621979, https://doi.org/10.1175/2008JAS2841.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nuijens, L., B. Medeiros, I. Sandu, and M. Ahlgrimm, 2015: The behavior of trade-wind cloudiness in observations and models: The major cloud components and their variability. J. Adv. Model. Earth Syst., 7, 600616, https://doi.org/10.1002/2014MS000390.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O’Connor, E. J., R. J. Hogan, and A. J. Illingworth, 2005: Retrieving stratocumulus drizzle parameters using Doppler radar and lidar. J. Appl. Meteor., 44, 1427, https://doi.org/10.1175/JAM-2181.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O’Connor, E. J., A. J. Illingworth, I. M. Brooks, C. D. Westbrook, R. J. Hogan, F. Davies, and B. J. Brooks, 2010: A method for estimating the turbulent kinetic energy dissipation rate from a vertically pointing Doppler lidar, and independent evaluation from balloon-borne in situ measurements. J. Atmos. Oceanic Technol., 27, 16521664, https://doi.org/10.1175/2010JTECHA1455.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O’Dowd, C. D., and G. de Leeuw, 2007: Marine aerosol production: A review of the current knowledge. Philos. Trans. Roy. Soc. London, 365A, 17531774, https://doi.org/10.1098/rsta.2007.2043.

    • Search Google Scholar
    • Export Citation
  • Ott, D. K., and T. M. Peters, 2008: A shelter to protect a passive sampler for coarse particulate matter, PM10–2.5. Aerosol Sci. Technol., 42, 299309, https://doi.org/10.1080/02786820802054236.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ovadnevaite, J., D. Ceburnis, M. Canagaratna, H. Berresheim, J. Bialek, G. Martucci, D. R. Worsnop, and C. O’Dowd, 2012: On the effect of wind speed on submicron sea salt mass concentrations and source fluxes. J. Geophys. Res., 117, D16201, https://doi.org/10.1029/2011JD017379.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Petters, M. D., and S. M. Kreidenweis, 2007: A single parameter representation of hygroscopic growth and cloud condensation nucleus activity. Atmos. Chem. Phys., 7, 19611971, https://doi.org/10.5194/acp-7-1961-2007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Posselt, R., and U. Lohmann, 2008: Influence of giant CCN on warm rain processes in the ECHAM5 GCM. Atmos. Chem. Phys., 8, 37693788, https://doi.org/10.5194/acp-8-3769-2008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prather, K. A., and Coauthors, 2013: Bringing the ocean into the laboratory to probe the chemical complexity of sea spray aerosol. Proc. Natl. Acad. Sci. USA, 110, 75507555, https://doi.org/10.1073/pnas.1300262110.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prospero, J. M., and O. L. Mayol-Bracero, 2013: Understanding the transport and impact of African dust on the Caribbean basin. Bull. Amer. Meteor. Soc., 94, 13291337, https://doi.org/10.1175/BAMS-D-12-00142.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prospero, J. M., F. Collard, J. Molinié, and A. Jeannot, 2014: Characterizing the annual cycle of African dust transport to the Caribbean basin and South America and its impact on the environment and air quality. Global Biogeochem. Cycles, 28, 757773, https://doi.org/10.1002/2013GB004802.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pruppacher, H., and J. Klett, 2010: Microphysics of Clouds and Precipitation. Springer, 954 pp.

    • Crossref
    • Export Citation
  • Quinn, P. K., D. B. Collins, V. H. Grassian, K. A. Prather, and T. S. Bates, 2015: Chemistry and related properties of freshly emitted sea spray aerosol. Chem. Rev., 115, 43834399, https://doi.org/10.1021/cr500713g.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rauber, R. M., and Coauthors, 2007: Rain in shallow cumulus over the ocean: The RICO campaign. Bull. Amer. Meteor. Soc., 88, 19121928, https://doi.org/10.1175/BAMS-88-12-1912.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rudich, Y., O. Khersonsky, and D. Rosenfeld, 2002: Treating clouds with a grain of salt. Geophys. Res. Lett., 29, 2060, https://doi.org/10.1029/2002GL016055.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Satheesh, S. K., and D. Lubin, 2003: Short wave versus long wave radiative forcing by Indian Ocean aerosols: Role of sea-surface winds. Geophys. Res. Lett., 30, 1695, https://doi.org/10.1029/2003GL017499.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Satheesh, S. K., and K. K. Moorthy, 2005: Radiative effects of natural aerosols: A review. Atmos. Environ., 39, 20892110, https://doi.org/10.1016/j.atmosenv.2004.12.029.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stevens, B., and Coauthors, 2016: The Barbados Cloud Observatory: Anchoring investigations of clouds and circulation on the edge of the ITCZ. Bull. Amer. Meteor. Soc., 97, 787801, https://doi.org/10.1175/BAMS-D-14-00247.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Takemura, T., T. Nakajima, O. Dubovik, B. N. Holben, and S. Kinne, 2002: Single-scattering albedo and radiative forcing of various aerosol species with a global three-dimensional model. J. Climate, 15, 333352, https://doi.org/10.1175/1520-0442(2002)015<0333:SSAARF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tang, I. N., A. C. Tridico, and K. H. Fung, 1997: Thermodynamic and optical properties of sea salt aerosols. J. Geophys. Res., 102, 23 26923 275, https://doi.org/10.1029/97JD01806.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Testud, J., S. Oury, R. A. Black, P. Amayenc, and X. Dou, 2001: The concept of “normalized” distribution to describe raindrop spectra: A tool for cloud physics and cloud remote sensing. J. Appl. Meteor., 40, 11181140, https://doi.org/10.1175/1520-0450(2001)040<1118:TCONDT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weinzierl, B., and Coauthors, 2017: The Saharan Aerosol Long-Range Transport and Aerosol–Cloud-Interaction Experiment: Overview and selected highlights. Bull. Amer. Meteor. Soc., 98, 14271451, https://doi.org/10.1175/BAMS-D-15-00142.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wex, H., and Coauthors, 2016: Aerosol arriving on the Caribbean island of Barbados: Physical properties and origin. Atmos. Chem. Phys., 16, 14 10714 130, https://doi.org/10.5194/acp-16-14107-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wood, N., 1981: A simple method for the calculation of turbulent deposition to smooth and rough surfaces. J. Aerosol Sci., 12, 275290, https://doi.org/10.1016/0021-8502(81)90127-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Woodcock, A. H., 1952: Atmospheric salt particles and raindrops. J. Meteor., 9, 200212, https://doi.org/10.1175/1520-0469(1952)009<0200:ASPAR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 936 267 24
PDF Downloads 647 156 14