Stratified Flows over and around Long Dynamically Tall Mountain Ridges

Arjun Jagannathan Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California

Search for other papers by Arjun Jagannathan in
Current site
Google Scholar
PubMed
Close
,
Kraig Winters Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California

Search for other papers by Kraig Winters in
Current site
Google Scholar
PubMed
Close
, and
Laurence Armi Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California

Search for other papers by Laurence Armi in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Uniformly stratified flows approaching long and dynamically tall ridges develop two distinct flow components over disparate time scales. The fluid upstream and below a “blocking level” is stagnant in the limit of an infinite ridge and flows around the sides when the ridge extent is finite. The streamwise half-width of the obstacle at the blocking level arises as a natural inner length scale for the flow, while the excursion time over this half-width is an associated short time scale for the streamwise flow evolution. Over a longer time scale, low-level horizontal flow splitting leads to the establishment of an upstream layerwise potential flow beneath the blocking level. We demonstrate through numerical experiments that for sufficiently long ridges, crest control and streamwise asymmetry are seen on both the short and long time scales. On the short time scale, upstream blocking is established quickly and the flow is well described as a purely infinite-ridge overflow. Over the long time scale associated with flow splitting, low-level flow escapes around the sides, but the overflow continues to be hydraulically controlled and streamwise asymmetric in the neighborhood of the crest. We quantify this late-time overflow by estimating its volumetric transport and then briefly demonstrate how this approach can be extended to predict the overflow across nonuniform ridge shapes.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Arjun Jagannathan, agjagann@ucsd.edu

Abstract

Uniformly stratified flows approaching long and dynamically tall ridges develop two distinct flow components over disparate time scales. The fluid upstream and below a “blocking level” is stagnant in the limit of an infinite ridge and flows around the sides when the ridge extent is finite. The streamwise half-width of the obstacle at the blocking level arises as a natural inner length scale for the flow, while the excursion time over this half-width is an associated short time scale for the streamwise flow evolution. Over a longer time scale, low-level horizontal flow splitting leads to the establishment of an upstream layerwise potential flow beneath the blocking level. We demonstrate through numerical experiments that for sufficiently long ridges, crest control and streamwise asymmetry are seen on both the short and long time scales. On the short time scale, upstream blocking is established quickly and the flow is well described as a purely infinite-ridge overflow. Over the long time scale associated with flow splitting, low-level flow escapes around the sides, but the overflow continues to be hydraulically controlled and streamwise asymmetric in the neighborhood of the crest. We quantify this late-time overflow by estimating its volumetric transport and then briefly demonstrate how this approach can be extended to predict the overflow across nonuniform ridge shapes.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Arjun Jagannathan, agjagann@ucsd.edu
Save
  • Armi, L., and G. J. Mayr, 2007: Continuously stratified flows across an Alpine crest with a pass: Shallow and deep föhn. Quart. J. Roy. Meteor. Soc., 133, 459477, https://doi.org/10.1002/qj.22.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Armi, L., and G. J. Mayr, 2015: Virtual and real topography for flows across mountain ranges. J. Appl. Meteor. Climatol., 54, 723731, https://doi.org/10.1175/JAMC-D-14-0231.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baines, P. G., 1977: Upstream influence and Long’s model in stratified flows. J. Fluid Mech., 82, 147159, https://doi.org/10.1017/S0022112077000573.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baines, P. G., 1987: Upstream blocking and airflow over mountains. Annu. Rev. Fluid Mech., 19, 7595, https://doi.org/10.1146/annurev.fl.19.010187.000451.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baines, P. G., 1998: Topographic Effects in Stratified Flows. Cambridge University Press, 500 pp.

  • Baines, P. G., and K. P. Hoinka, 1985: Stratified flow over two-dimensional topography in fluid of infinite depth: A laboratory simulation. J. Atmos. Sci., 42, 16141630, https://doi.org/10.1175/1520-0469(1985)042<1614:SFOTDT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bauer, M. H., G. J. Mayr, I. Vergeiner, and H. Pichler, 2000: Strongly nonlinear flow over and around a three-dimensional mountain as a function of the horizontal aspect ratio. J. Atmos. Sci., 57, 39713991, https://doi.org/10.1175/1520-0469(2001)058<3971:SNFOAA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Belušić, D., M. Pasarić, and M. Orlić, 2004: Quasi-periodic bora gusts related to the structure of the troposphere. Quart. J. Roy. Meteor. Soc., 130, 11031121, https://doi.org/10.1256/qj.03.53.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brighton, P., 1978: Strongly stratified flow past three-dimensional obstacles. Quart. J. Roy. Meteor. Soc., 104, 289307, https://doi.org/10.1002/qj.49710444005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chow, F. K., S. F. De Wekker, and B. J. Snyder, 2012: Mountain Weather Research and Forecasting: Recent Progress and Current Challenges. Springer Science and Business Media, 750 pp., https://doi.org/10.1007/978-94-007-4098-3.

    • Crossref
    • Export Citation
  • Drazin, P. G., 1961: On the steady flow of a fluid of variable density past an obstacle. Tellus, 13, 239251, https://doi.org/10.3402/tellusa.v13i2.9451.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Durran, D. R., 1990: Mountain waves and downslope winds. Atmospheric Processes over Complex Terrain, Meteor. Monogr., No. 45, Amer. Meteor. Soc., 59–81.

    • Crossref
    • Export Citation
  • Epifanio, C. C., and D. R. Durran, 2001: Three-dimensional effects in high-drag-state flows over long ridges. J. Atmos. Sci., 58, 10511065, https://doi.org/10.1175/1520-0469(2001)058<1051:TDEIHD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Epifanio, C. C., and R. Rotunno, 2005: The dynamics of orographic wake formation in flows with upstream blocking. J. Atmos. Sci., 62, 31273150, https://doi.org/10.1175/JAS3523.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hanazaki, H., 1988: A numerical study of three-dimensional stratified flow past a sphere. J. Fluid Mech., 192, 393419, https://doi.org/10.1017/S0022112088001910.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hunt, J., and W. Snyder, 1980: Experiments on stably and neutrally stratified flow over a model three-dimensional hill. J. Fluid Mech., 96, 671704, https://doi.org/10.1017/S0022112080002303.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jackson, P. L., G. Mayr, and S. Vosper, 2013: Dynamically-driven winds. Mountain Weather Research and Forecasting, F. K. Chow, S. F. De Wekker, and B. J. Snyder, Eds., Springer, 121–218, https://doi.org/10.1007/978-94-007-4098-3_3.

    • Crossref
    • Export Citation
  • Jagannathan, A., K. B. Winters, and L. Armi, 2017: Stability of stratified downslope flows with an overlying stagnant isolating layer. J. Fluid Mech., 810, 392411, https://doi.org/10.1017/jfm.2016.683.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, Y.-L., 2007: Mesoscale Dynamics. Cambridge University Press, 630 pp., https://doi.org/10.1017/CBO9780511619649.

    • Crossref
    • Export Citation
  • Mayr, G. J., and L. Armi, 2010: The influence of downstream diurnal heating on the descent of flow across the Sierras. J. Appl. Meteor. Climatol., 49, 19061912, https://doi.org/10.1175/2010JAMC2516.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ólafsson, H., and P. Bougeault, 1996: Nonlinear flow past an elliptic mountain ridge. J. Atmos. Sci., 53, 24652489, https://doi.org/10.1175/1520-0469(1996)053<2465:NFPAEM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ólafsson, H., and P. Bougeault, 1997: The effect of rotation and surface friction on orographic drag. J. Atmos. Sci., 54, 193210, https://doi.org/10.1175/1520-0469(1997)054<0193:TEORAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peltier, W., and J. Scinocca, 1990: The origin of severe downslope windstorm pulsations. J. Atmos. Sci., 47, 28532870, https://doi.org/10.1175/1520-0469(1990)047<2853:TOOSDW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pierrehumbert, R., and B. Wyman, 1985: Upstream effects of mesoscale mountains. J. Atmos. Sci., 42, 9771003, https://doi.org/10.1175/1520-0469(1985)042<0977:UEOMM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Queney, P., 1948: The problem of air flow over mountains: A summary of theoretical studies. Bull. Amer. Meteor. Soc., 29, 1626, https://doi.org/10.1175/1520-0477-29.1.16.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schar, C., and D. R. Durran, 1997: Vortex formation and vortex shedding in continuously stratified flows past isolated topography. J. Atmos. Sci., 54, 534554, https://doi.org/10.1175/1520-0469(1997)054<0534:VFAVSI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sheppard, P., 1956: Airflow over mountains. Quart. J. Roy. Meteor. Soc., 82, 528529, https://doi.org/10.1002/qj.49708235418.

  • Smith, R. B., 1980: Linear theory of stratified hydrostatic flow past an isolated mountain. Tellus, 32, 348364, https://doi.org/10.3402/tellusa.v32i4.10590.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, R. B., 1985: On severe downslope winds. J. Atmos. Sci., 42, 25972603, https://doi.org/10.1175/1520-0469(1985)042<2597:OSDW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, R. B., 1989: Hydrostatic airflow over mountains. Advances in Geophysics, Vol. 31, Academic Press, 1–41, https://doi.org/10.1016/S0065-2687(08)60052-7.

    • Crossref
    • Export Citation
  • Smolarkiewicz, P. K., and R. Rotunno, 1989: Low Froude number flow past three-dimensional obstacles. Part I: Baroclinically generated lee vortices. J. Atmos. Sci., 46, 11541164, https://doi.org/10.1175/1520-0469(1989)046<1154:LFNFPT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wells, H., S. Webster, and A. Brown, 2005: The effect of rotation on the pressure drag force produced by flow around long mountain ridges. Quart. J. Roy. Meteor. Soc., 131, 13211338, https://doi.org/10.1256/qj.04.37.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Winters, K. B., 2016: The turbulent transition of a supercritical downslope flow: Sensitivity to downstream conditions. J. Fluid Mech., 792, 9971012, https://doi.org/10.1017/jfm.2016.113.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Winters, K. B., and A. de la Fuente, 2012: Modelling rotating stratified flows at laboratory-scale using spectrally-based DNS. Ocean Modell., 49–50, 4759, https://doi.org/10.1016/j.ocemod.2012.04.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Winters, K. B., and L. Armi, 2014: Topographic control of stratified flows: Upstream jets, blocking and isolating layers. J. Fluid Mech., 753, 80103, https://doi.org/10.1017/jfm.2014.363.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 471 131 9
PDF Downloads 461 123 8