Modal Decomposition of the Global Response to Tropical Heating Perturbations Resembling MJO

Katarina Kosovelj University of Ljubljana, Ljubljana, Slovenia

Search for other papers by Katarina Kosovelj in
Current site
Google Scholar
PubMed
Close
,
Fred Kucharski ICTP, Trieste, Italy

Search for other papers by Fred Kucharski in
Current site
Google Scholar
PubMed
Close
,
Franco Molteni ECMWF, Reading, United Kingdom

Search for other papers by Franco Molteni in
Current site
Google Scholar
PubMed
Close
, and
Nedjeljka Žagar University of Ljubljana, Ljubljana, Slovenia

Search for other papers by Nedjeljka Žagar in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The paper presents four ensembles of numerical experiments that compare the response to monopole and dipole heating perturbations resembling different phases of the Madden–Julian oscillation (MJO). The results quantify the Rossby and inertio-gravity (IG) wave response using the normal-mode function decomposition. The day 3 response is characterized by about 60% variance in the IG modes, with about 85% of it belonging to the Kelvin waves. On day 14, only 10% of the response variance is due to the Kelvin waves. Although the n = 1 Rossby mode is the main contributor to the Rossby variance at all time scales, the n > 1 Rossby modes contribute over 50% of the balanced response to the MJO heating. In the short range, dipole perturbations produce a response with the maximal variance in zonal wavenumbers k = 2–3 whereas in the medium range the response maximizes at k = 1 in all experiments. Furthermore, the medium-range response to the heating perturbation mimicking MJO phase 6 is found also over Europe.

Current affiliation: Meteorological Institute, University of Hamburg, Hamburg, Germany.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Katarina Kosovelj, katarina.kosovelj@fmf.uni-lj.si

Abstract

The paper presents four ensembles of numerical experiments that compare the response to monopole and dipole heating perturbations resembling different phases of the Madden–Julian oscillation (MJO). The results quantify the Rossby and inertio-gravity (IG) wave response using the normal-mode function decomposition. The day 3 response is characterized by about 60% variance in the IG modes, with about 85% of it belonging to the Kelvin waves. On day 14, only 10% of the response variance is due to the Kelvin waves. Although the n = 1 Rossby mode is the main contributor to the Rossby variance at all time scales, the n > 1 Rossby modes contribute over 50% of the balanced response to the MJO heating. In the short range, dipole perturbations produce a response with the maximal variance in zonal wavenumbers k = 2–3 whereas in the medium range the response maximizes at k = 1 in all experiments. Furthermore, the medium-range response to the heating perturbation mimicking MJO phase 6 is found also over Europe.

Current affiliation: Meteorological Institute, University of Hamburg, Hamburg, Germany.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Katarina Kosovelj, katarina.kosovelj@fmf.uni-lj.si
Save
  • Adames, A. F., and J. M. Wallace, 2014: Three-dimensional structure and evolution of the MJO and its relation to the mean flow. J. Atmos. Sci., 71, 20072026, https://doi.org/10.1175/JAS-D-13-0254.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boyd, J. P., and C. Zhou, 2008: Uniform asymptotics for the linear Kelvin wave in spherical geometry. J. Atmos. Sci., 65, 655660, https://doi.org/10.1175/2007JAS2356.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cassou, C., 2008: Intraseasonal interaction between the Madden-Julian oscillation and the North Atlantic Oscillation. Nature, 455, 523527, https://doi.org/10.1038/nature07286.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garcia, R. R., and M. L. Salby, 1987: Transient response to localized episodic heating in the tropics. Part II: Far-field behavior. J. Atmos. Sci., 44, 499530, https://doi.org/10.1175/1520-0469(1987)044<0499:TRTLEH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1980: Some simple solutions for heat-induced tropical circulation. Quart. J. Roy. Meteor. Soc., 106, 447462, https://doi.org/10.1002/qj.49710644905.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., and D. J. Karoly, 1981: The steady linear response of a spherical atmosphere to thermal and orographic forcing. J. Atmos. Sci., 38, 11791196, https://doi.org/10.1175/1520-0469(1981)038<1179:TSLROA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jin, F., and B. J. Hoskins, 1995: The direct response to tropical heating in a baroclinic atmosphere. J. Atmos. Sci., 52, 307319, https://doi.org/10.1175/1520-0469(1995)052<0307:TDRTTH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kasahara, A., 1976: Normal modes of ultralong waves in the atmosphere. Mon. Wea. Rev., 104, 669690, https://doi.org/10.1175/1520-0493(1976)104<0669:NMOUWI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kasahara, A., 1984: The linear response of a stratified global atmosphere to tropical thermal forcing. J. Atmos. Sci., 41, 22172237, https://doi.org/10.1175/1520-0469(1984)041<2217:TLROAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kasahara, A., and K. Puri, 1981: Spectral representation of three-dimensional global data by expansion in normal mode functions. Mon. Wea. Rev., 109, 3751, https://doi.org/10.1175/1520-0493(1981)109<0037:SROTDG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kasahara, A., and P. L. da Silva Dias, 1986: Response of planetary waves to stationary tropical heating in a global atmosphere with meridional and vertical shear. J. Atmos. Sci., 43, 18931911, https://doi.org/10.1175/1520-0469(1986)043<1893:ROPWTS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kucharski, F., F. Molteni, and A. Bracco, 2006: Decadal interactions between the western tropical Pacific and the North Atlantic Oscillation. Climate Dyn., 26, 7991, https://doi.org/10.1007/s00382-005-0085-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kucharski, F., F. Molteni, M. P. King, R. Farneti, I.-S. Kang, and L. Feudale, 2013: On the need of intermediate complexity general circulation models: A “SPEEDY” example. Bull. Amer. Meteor. Soc., 94, 2530, https://doi.org/10.1175/BAMS-D-11-00238.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, S. K., C. Wang, and B. E. Mapes, 2009: A simple atmospheric model of the local and teleconnection responses to tropical heating anomalies. J. Climate, 22, 272284, https://doi.org/10.1175/2008JCLI2303.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, H., and G. Brunet, 2018: Extratropical response to the MJO: Nonlinearity and sensitivity to initial state. J. Atmos. Sci., 75, 219234, https://doi.org/10.1175/JAS-D-17-0189.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, H., G. Brunet, and J. Derome, 2009: An observed connection between the North Atlantic Oscillation and the Madden–Julian oscillation. J. Climate, 22, 364380, https://doi.org/10.1175/2008JCLI2515.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, H., G. Brunet, and R. Mo, 2010: Impact of the Madden–Julian oscillation on wintertime precipitation in Canada. Mon. Wea. Rev., 138, 38223839, https://doi.org/10.1175/2010MWR3363.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Madden, R. A., and P. R. Julian, 1971: Detection of a 40–50 day oscillation in the zonal wind in the tropical Pacific. J. Atmos. Sci., 28, 702708, https://doi.org/10.1175/1520-0469(1971)028<0702:DOADOI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Madden, R. A., and P. R. Julian, 1972: Description of global-scale circulation cells in the tropics with a 40–50 day period. J. Atmos. Sci., 29, 11091123, https://doi.org/10.1175/1520-0469(1972)029<1109:DOGSCC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Molteni, F., 2003: Atmospheric simulations using a GCM with simplified physical parametrizations. I: Model climatology and variability in multi-decadal experiments. Climate Dyn., 20, 175195, https://doi.org/10.1007/s00382-002-0268-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Park, C. K., M. J. Suarez, and S. D. Schubert, 1995: Response of the zonally asymmetric flow to time-dependent tropical heating. J. Atmos. Sci., 52, 37383756, https://doi.org/10.1175/1520-0469(1995)052<3738:ROTZAF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Phillips, N. A., 1990: Dispersion processes in large-scale weather prediction. World Meteorological Organization Rep. 700, 126 pp.

  • Poli, P., and Coauthors, 2016: ERA-20C: An atmospheric reanalysis of the twentieth century. J. Climate, 29, 40834097, https://doi.org/10.1175/JCLI-D-15-0556.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sardeshmukh, P. D., and B. J. Hoskins, 1988: The generation of global rotational flow by steady idealized tropical divergence. J. Atmos. Sci., 45, 12281251, https://doi.org/10.1175/1520-0469(1988)045<1228:TGOGRF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seo, K. H., and S. W. Son, 2012: The global atmospheric circulation response to tropical diabatic heating associated with the Madden–Julian oscillation during northern winter. J. Atmos. Sci., 69, 7996, https://doi.org/10.1175/2011JAS3686.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seo, K. H., and H. J. Lee, 2017: Mechanisms for a PNA-like teleconnection pattern in response to the MJO. J. Atmos. Sci., 74, 17671781, https://doi.org/10.1175/JAS-D-16-0343.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stechmann, S., and A. J. Majda, 2015: Identifying the skeleton of the Madden–Julian oscillation in observational data. Mon. Wea. Rev., 143, 395416, https://doi.org/10.1175/MWR-D-14-00169.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ting, M., and P. Sardeshmukh, 1993: Factors determining the extratropical response to equatorial diabatic heating anomalies. J. Atmos. Sci., 50, 907918, https://doi.org/10.1175/1520-0469(1993)050<0907:FDTERT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Webster, P. J., and H. R. Chang, 1998: Atmospheric wave propagation in heterogeneous flow: Basic flow controls on tropical–extratropical interaction and equatorial wave modification. Dyn. Atmos. Oceans, 27, 91134, https://doi.org/10.1016/S0377-0265(97)00003-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Welch, B. L., 1947: The generalization of “Student’s” problem when several different population variances are involved. Biometrika, 34, 2835.

    • Search Google Scholar
    • Export Citation
  • Žagar, N., and C. L. E. Franzke, 2015: Systematic decomposition of the Madden-Julian oscillation into balanced and inertio-gravity components. Geophys. Res. Lett., 42, 68296835, https://doi.org/10.1002/2015GL065130.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Žagar, N., R. Buizza, and J. Tribbia, 2015a: A three-dimensional multivariate modal analysis of atmospheric predictability with application to the ECMWF ensemble. J. Atmos. Sci., 72, 44234444, https://doi.org/10.1175/JAS-D-15-0061.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Žagar, N., A. Kasahara, K. Terasaki, J. Tribbia, and H. Tanaka, 2015b: Normal-mode function representation of global 3-D data sets: Open-access software for the atmospheric research community. Geosci. Model Dev., 8, 11691195, https://doi.org/10.5194/gmd-8-1169-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, C., 2005: Madden-Julian oscillation. Rev. Geophys., 43, RG2003, https://doi.org/10.1029/2004RG000158.

  • Zhong, W., and J. Nogues-Paegle, 1990: Normal mode projections of GCM response to tropical forcing. Tellus, 42A, 429443, https://doi.org/10.3402/tellusa.v42i4.11888.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 454 117 9
PDF Downloads 346 75 1